Skip to main content
Log in

Residual stress generation and evaluation in milling: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The machining distortion induced by residual stresses is always a standout manufacturing issue during the processing of complex components. Therefore, it is very necessary for us to master the generation, evaluation, and optimization methods of residual stresses. In this review, the author concludes the research on the generation mechanism, simulation, and prediction of milling residual stress in the past decades, as well as the detection methods and other auxiliary process control methods of milling residual stress. Moreover, the author sums up the problems and difficulties in the research on milling residual stress at present, and gives the prospect of the future trends. This review can provide a reference for the further research of milling residual stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Rasul T, Meguid SA (2016) Machining residual stresses. Mater Sci Tech-Lond 12:445–449. https://doi.org/10.1179/026708396790165894

    Article  Google Scholar 

  2. Thornton HR, Henrikson M (1979) The effect of load rate on the fatigue life of graphite/epoxy composites. Composites 10:1–5. https://doi.org/10.1016/0010-4361(80)90410-3

    Article  Google Scholar 

  3. Zhou JZ, Huang S, Zuo LD, Meng XK, Sheng J, Tian Q, Han YH, Zhu WL (2014) Effects of laser peening on residual stresses and fatigue crack growth properties of Ti–6Al–4V titanium alloy. Opt Laser Eng 52:189–194. https://doi.org/10.1016/j.optlaseng.2013.06.011

    Article  Google Scholar 

  4. Yazdani Nezhad H, O’Dowd NP (2015) Creep relaxation in the presence of residual stress. Eng Fract Mech 138:250–264. https://doi.org/10.1016/j.engfracmech.2015.03.037

    Article  Google Scholar 

  5. Cao SY, Li HN, Tan GF, Wu CQ, Huang WJ, Zhou Q, Hu ZJ (2023) Bi-directional drilling of CFRPs: from principle to delamination suppression. Compos Part B-Eng 248. https://doi.org/10.1016/j.compositesb.2022.110385

  6. Zhu DH, Feng XZ, Xu XH, Yang ZY, Li WL, Yan SJ, Ding H (2020) Robotic grinding of complex components: a step towards efficient and intelligent machining - challenges, solutions, and applications. Robot Cim-Int Manuf 65. https://doi.org/10.1016/j.rcim.2019.101908

  7. Wu CQ, Yang PW, Lei T, Zhu DH, Zhou Q, Zhao S (2022) A teaching-free welding position guidance method for fillet weld based on laser vision sensing and EGM technology. Optik 262. https://doi.org/10.1016/j.ijleo.2022.169291

  8. Liu H, Fu J, He M, Hua L, Zhu D (2023) GWM-view: Gradient-weighted multi-view calibration method for machining robot positioning. Robot Cim-Int Manuf 83. https://doi.org/10.1016/j.rcim.2023.102560

  9. Möhring H-C, Wiederkehr P, Lerez C, Schmitz H, Goldau H, Czichy C (2016) Sensor integrated CFRP structures for intelligent fixtures. Procedia Tech 26:120–128. https://doi.org/10.1016/j.protcy.2016.08.017

    Article  Google Scholar 

  10. Xu C, Feng P, Zhang J, Yu D, Wu Z (2016) Milling stability prediction for flexible workpiece using dynamics of coupled machining system. Int J Adv Manuf Tech 90:3217–3227. https://doi.org/10.1007/s00170-016-9599-8

    Article  Google Scholar 

  11. Jiang X, Kong X, Zhang Z, Wu Z, Ding Z, Guo M (2020) Modeling the effects of undeformed chip volume (UCV) on residual stresses during the milling of curved thin-walled parts. Int J Mech Sci 167:1–14. https://doi.org/10.1016/j.ijmecsci.2019.105162

    Article  Google Scholar 

  12. Mantle AL, Aspinwall DK (2001) Surface integrity of a high speed milled gamma titanium aluminide. J Mater Process Tech 118:143–150. https://doi.org/10.1016/S0924-0136(01)00914-1

    Article  Google Scholar 

  13. Sridhar BR, Devananda G, Ramachandra K, Bhat R (2003) Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. J Mater Process Tech 139:628–634. https://doi.org/10.1016/s0924-0136(03)00612-5

    Article  Google Scholar 

  14. Sun J, Guo YB (2009) A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. J Mater Process Tech 209:4036–4042. https://doi.org/10.1016/j.jmatprotec.2008.09.022

    Article  Google Scholar 

  15. Tang ZT, Liu ZQ, Pan YZ, Wan Y, Ai X (2009) The influence of tool flank wear on residual stresses induced by milling aluminum alloy. J Mater Process Tech 209:4502–4508. https://doi.org/10.1016/j.jmatprotec.2008.10.034

    Article  Google Scholar 

  16. Salahshoor M, Guo YB (2011) Surface integrity of biodegradable orthopedic magnesium–calcium alloy by high-speed dry face milling. Prod Eng 5:641–650. https://doi.org/10.1007/s11740-011-0341-y

    Article  Google Scholar 

  17. Yao CF, Yang ZC, Huang XC, Ren JX, Zhang DH (2012) The study of residual stresses in high-speed milling of titanium alloy TC11. Adv Mater Res 443–444:160–165. https://doi.org/10.4028/www.scientific.net/AMR.443-444.160

    Article  Google Scholar 

  18. Huang X, Sun J, Li J, Han X, Xiong Q (2013) An experimental investigation of residual stresses in high-speed end milling 7050–T7451 aluminum alloy. Adv Mech Eng 5:1–7. https://doi.org/10.1155/2013/592659

    Article  Google Scholar 

  19. Jiang X, Li B, Yang J, Zuo XY (2013) Effects of tool diameters on the residual stress and distortion induced by milling of thin-walled part. Int J Adv Manuf Tech 68:175–186. https://doi.org/10.1007/s00170-012-4717-8

    Article  Google Scholar 

  20. Hioki D, Diniz AE, Sinatora A (2013) Influence of HSM cutting parameters on the surface integrity characteristics of hardened AISI H13 steel. J Braz Soc Mech Sci 35:537–553. https://doi.org/10.1007/s40430-013-0050-x

    Article  Google Scholar 

  21. Tampu NC, Chirita B, Herghelegiu E, Brabie G (2014) Influence of the cutting regime on the residual stresses generated by carbon steel milling. Indian J Eng Mater S 21:283–288

    Google Scholar 

  22. Huang XM, Sun J, Li JF (2015) Experimental investigation of the effect of tool geometry on residual stresses in high speed milling 7050–T7451 aluminium alloy. Int J Surf Sci Eng 9:359–369. https://doi.org/10.1504/IJSURFSE.2015.070813

    Article  Google Scholar 

  23. Li B, Jiang X, Yang J, Liang SY (2015) Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part. J Mater Process Tech 216:223–233. https://doi.org/10.1016/j.jmatprotec.2014.09.016

    Article  Google Scholar 

  24. Xin H, Shi Y, Ning L, Zhao T (2015) Residual stress and affected layer in disc milling of titanium alloy. Mater Manuf Process 31:1645–1653. https://doi.org/10.1080/10426914.2015.1090583

    Article  Google Scholar 

  25. Hood R, Soo SL, Sage C, Carcass P (2015) High speed end milling of a zirconium alloy. CIRP Ann 64:105–108. https://doi.org/10.1016/j.cirp.2015.04.057

    Article  Google Scholar 

  26. Tian W, Li Y, Ren J, Yao C (2016) Sensitivity analysis of the influence of milling parameters on the surface residual stress of titanium alloy TC11. Procedia CIRP 56:149–154. https://doi.org/10.1016/j.procir.2016.10.045

    Article  Google Scholar 

  27. Abdelkrim M, Brabie G, Belloufi A, Catalin T, Chirita B (2017) Experimental investigations to evaluate the effects of cutting parameters on cutting temperature and residual stresses during milling process of the AISI 1045. IOP Conf Ser: Matar Sci Eng 227:1–13. https://doi.org/10.1088/1757-899x/227/1/012001

    Article  Google Scholar 

  28. Jiang X, Zhu Y, Zhang Z, Guo M, Ding Z (2018) Investigation of residual impact stress and its effects on the precision during milling of the thin-walled part. Int J Adv Manuf Tech 97:877–892. https://doi.org/10.1007/s00170-018-1941-x

    Article  Google Scholar 

  29. Ji C, Sun S, Lin B, Fei J (2018) Effect of cutting parameters on the residual stress distribution generated by pocket milling of 2219 aluminum alloy. Adv Mech Eng 10:1–15. https://doi.org/10.1177/1687814018813055

    Article  Google Scholar 

  30. Wu Q, Xie D-J, Si Y, Zhang Y-D, Li L, Zhao Y-X (2018) Simulation analysis and experimental study of milling surface residual stress of Ti-10V-2Fe-3Al. J Manuf Process 32:530–537. https://doi.org/10.1016/j.jmapro.2018.03.015

    Article  Google Scholar 

  31. Qiao Y, Guo P, Wang S, Yang X (2018) Experimental study on residual stress of milling medical magnesium alloy. IOP Conf Ser: Matar Sci Eng 397:1–7. https://doi.org/10.1088/1757-899x/397/1/012046

    Article  Google Scholar 

  32. Yang D, Xiao X, Liu Y, Sun J (2019) Peripheral milling-induced residual stress and its effect on tensile–tensile fatigue life of aeronautic titanium alloy Ti–6Al–4V. Aeronaut J 123:212–229. https://doi.org/10.1017/aer.2018.151

    Article  Google Scholar 

  33. Guo Q, Xie J, Yang W, Xu Y, Wang Y (2019) Comprehensive investigation on the residual stress of large screws by whirlwind milling. Int J Adv Manuf Tech 106:843–850. https://doi.org/10.1007/s00170-019-04633-x

    Article  Google Scholar 

  34. dos Santos PR, Droppa R, Lopes de Oliveira MC, Antunes RA (2021) Effect of milling parameters on the stability of the passive film of AISI 304 stainless steel. J Mater Eng Perform 30:8131–8144. https://doi.org/10.1007/s11665-021-06064-w

    Article  Google Scholar 

  35. Wimmer M, Woelfle CH, Krempaszky C, Zaeh MF (2021) The influences of process parameters on the thermo-mechanical workpiece load and the sub-surface residual stresses during peripheral milling of Ti-6Al-4V. Procedia CIRP 102:471–476. https://doi.org/10.1016/j.procir.2021.09.080

    Article  Google Scholar 

  36. Oliveira ARF, da Silva LRR, Baldin V, Fonseca MPC, Silva RB, Machado AR (2021) Effect of tool wear on the surface integrity of Inconel 718 in face milling with cemented carbide tools. Wear 476:3752–3752. https://doi.org/10.1016/j.wear.2021.203752

    Article  Google Scholar 

  37. Tan L, Yao C, Zhang D, Cui M, Shen X (2021) Effects of tool wear on machined surface integrity during milling of Inconel 718. Int J Adv Manuf Tech 116:2497–2509. https://doi.org/10.1007/s00170-021-07626-x

    Article  Google Scholar 

  38. Marakini V, Srinivasa Pai P, Udaya Bhat K, Thakur DS, Achar BP (2022) Enhancing the surface integrity characteristics of Al-Li alloy using face milling. Mater Lett 324. https://doi.org/10.1016/j.matlet.2022.132610

  39. Song Y, Chen H, Tang Y, Huang S, Yin G, Yin M (2022) Study on surface morphology and residual stress in inclined milling of titanium alloy TC11. Int J Adv Manuf Tech 122:3411–3423. https://doi.org/10.1007/s00170-022-10105-6

  40. Yao G, Liu Z, Song Q, Wang B, Cai Y (2022) Numerical prediction and experimental investigation of residual stresses in sequential milling of GH4169 considering initial stress effect. Int J Adv Manuf Tech 119:7215–7228. https://doi.org/10.1007/s00170-022-08740-0

    Article  Google Scholar 

  41. Ullah I, Zhang S, Waqar S (2022) Numerical and experimental investigation on thermo-mechanically induced residual stress in high-speed milling of Ti-6Al-4V alloy. J Manuf Process 76:575–587. https://doi.org/10.1016/j.jmapro.2022.02.039

    Article  Google Scholar 

  42. Guo Q, Wang YL, Zhou B (2023) Analytical study on the cutting force and residual stress in whirlwind milling of a large screw. J Theor App Mech-Pol 61:65–76. https://doi.org/10.15632/jtam-pl/157479

    Article  Google Scholar 

  43. Silveira ML, de Oliveira DA, dos Santos A, de Faria PE, Abrao AM (2023) Assessment of the surface integrity of AISI H13 tool steel after milling with carbide and cermet inserts. Int J Adv Manuf Tech 125:3135–3148. https://doi.org/10.1007/s00170-023-10843-1

    Article  Google Scholar 

  44. Li BZ, Yan YZ, Yang JG (2015) Influence and optimization criterion of milling modes and process parameters on residual stress, in: 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME), Shenzhen, Peoples R China, 1874–1879

  45. Xu JY, An QL, Chen M (2011) Analysis on milling performance of 2024–T351 aluminum alloy using TiAlN coated carbide cutting tools. Mater Sci Forum 697–698:218–222. https://doi.org/10.4028/www.scientific.net/MSF.697-698.218

    Article  Google Scholar 

  46. Prakash MK, Chethan KCS, Thirtha PHP (2020) Residual stresses modelling of end milling process using numerical and experimental methods. Mater Sci Forum 978:106–113. https://doi.org/10.4028/www.scientific.net/MSF.978.106

    Article  Google Scholar 

  47. Guillemot N, Mawussi BK, Lartigue C, Billardon R (2012) A first approach to characterize the surface integrity generated by ball-end finishing milling. Int J Adv Manuf Tech 64:269–279. https://doi.org/10.1007/s00170-012-4017-3

    Article  Google Scholar 

  48. Cellier A, Chalon F, Grimal-Perrigouas V, Bonhoure D, Leroy R (2014) Effects of cutting angles inTi-6al-4vmilling process on surface integrity: influence of roughness and residual stresses on fatigue limit. Mach Sci Technol 18:565–584. https://doi.org/10.1080/10910344.2014.955369

    Article  Google Scholar 

  49. North B (1987) Ceramic cutting tools—a review. Int J High Tech Ceram 3:113–127. https://doi.org/10.1016/0267-3762(87)90032-4

    Article  Google Scholar 

  50. Pervaiz S, Rashid A, Deiab I, Nicolescu M (2014) Influence of tool materials on machinability of titanium- and nickel-based alloys: a review. Mater Manuf Process 29:219–252. https://doi.org/10.1080/10426914.2014.880460

    Article  Google Scholar 

  51. Grigoriev SN, Fedorov SV, Hamdy K (2019) Materials, properties, manufacturing methods and cutting performance of innovative ceramic cutting tools − a review. Manuf Rev 6:1–27. https://doi.org/10.1051/mfreview/2019016

    Article  Google Scholar 

  52. Wang B, Liu Z (2018) Influences of tool structure, tool material and tool wear on machined surface integrity during turning and milling of titanium and nickel alloys: a review. Int J Adv Manuf Tech 98:1925–1975. https://doi.org/10.1007/s00170-018-2314-1

    Article  Google Scholar 

  53. Holmberg J, Wretland A, Berglund J, Beno T (2020) A detailed investigation of residual stresses after milling Inconel 718 using typical production parameters for assessment of affected depth. Mater Today Commun 24:1–12. https://doi.org/10.1016/j.mtcomm.2020.100958

    Article  Google Scholar 

  54. Sutanto H, Madl J (2018) Residual stress development in hard machining - a review. IOP Conf Ser: Matar Sci Eng 420:1–9. https://doi.org/10.1088/1757-899x/420/1/012031

    Article  Google Scholar 

  55. Liu J, Sun J, Zaman UKu, Chen W (2020) Influence of wear and tool geometry on the chatter, cutting force, and surface integrity of TB6 titanium alloy with solid carbide cutters of different geometry. Stroj Vestn-J Mech E 66:709–723. https://doi.org/10.5545/sv-jme.2020.6714

    Article  Google Scholar 

  56. Oliveira GD, Fonseca MC, Araujo AC (2018) Residual stresses and cutting forces in cryogenic milling of Inconel 718. Procedia CIRP 77:211–214. https://doi.org/10.1016/j.procir.2018.08.289

    Article  Google Scholar 

  57. Kummamkandath A, Duchosal A, Morandeau A, Leroy R (2020) Investigation on residual stresses in milling of Ti-6Al-4V for both rake and flank application of different MWF strategies. Procedia CIRP 87:131–136. https://doi.org/10.1016/j.procir.2020.02.097

    Article  Google Scholar 

  58. Khaliq W, Zhang C, Jamil M, Khan AM (2020) Tool wear, surface quality, and residual stresses analysis of micro-machined additive manufactured Ti–6Al–4V under dry and MQL conditions. Tribol Int 151:1–31. https://doi.org/10.1016/j.triboint.2020.106408

    Article  Google Scholar 

  59. Wika KK, Litwa P, Hitchens C (2019) Impact of supercritical carbon dioxide cooling with minimum quantity lubrication on tool wear and surface integrity in the milling of AISI 304L stainless steel. Wear 426–427:1691–1701. https://doi.org/10.1016/j.wear.2019.01.103

    Article  Google Scholar 

  60. de Oliveira AJ, de Araújo Oliveira MV, de Melo ACA, de Carvalho Filho ET, da Conceição Hermenegildo TF, Castro NA, Boing D (2020) Effects of different tool material grades and lubri-cooling techniques in milling of high-Cr white cast iron. Int J Adv Manuf Tech 110:875–886. https://doi.org/10.1007/s00170-020-05910-w

    Article  Google Scholar 

  61. Raftar OR, Kaveh M, Khajehzadeh M, Rahimi A, Razfar MR (2021) Nano-lubricant influence on surface residual stresses in hard milling. P I Mech Eng E-J Pro 235:1499–1510. https://doi.org/10.1177/09544089211004793

    Article  Google Scholar 

  62. Zhang J, Li C, Zhang Y, Yang M, Jia D, Liu G, Hou Y, Li R, Zhang N, Wu Q, Cao H (2018) Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J Clean Prod 193:236–248. https://doi.org/10.1016/j.jclepro.2018.05.009

    Article  Google Scholar 

  63. Nsr KGM, Anwar S, Rahman MA, Erdi Korkmaz M, Gupta MK, Alfaify A, Mia M (2021) Investigation of surface modification and tool wear on milling Nimonic 80A under hybrid lubrication. Tribol Int 155:1–36. https://doi.org/10.1016/j.triboint.2020.106762

    Article  Google Scholar 

  64. Damir A, Shi B, Attia MH (2019) Flow characteristics of optimized hybrid cryogenic-minimum quantity lubrication cooling in machining of aerospace materials. CIRP Ann 68:77–80. https://doi.org/10.1016/j.cirp.2019.04.047

    Article  Google Scholar 

  65. Allu VP, Raju DL, Ramakrishna S (2019) Performance analysis of cryogenically treated plus tempered carbide inserts in turning of Inconel 718 using cryogenic minimum quantity lubrication cooling technique. P I Mech Eng J-J Eng 233:1810–1819. https://doi.org/10.1177/1350650119845744

    Article  Google Scholar 

  66. Tan L, Zhang D, Yao C, Wu D, Zhang J (2017) Evolution and empirical modeling of compressive residual stress profile after milling, polishing and shot peening for TC17 alloy. J Manuf Process 26:155–165. https://doi.org/10.1016/j.jmapro.2017.02.002

    Article  Google Scholar 

  67. Jiang X, Kong X, He S, Wu K (2021) Modeling the superposition of residual stresses induced by cutting force and heat during the milling of thin-walled parts. J Manuf Process 68:356–370. https://doi.org/10.1016/j.jmapro.2021.05.048

    Article  Google Scholar 

  68. Robles A, Aurrekoetxea M, Plaza S, Llanos I, Zelaieta O (2022) Empirical modeling of residual stress profiles in Ti6Al4V after face-milling. Procedia CIRP 108:362–366. https://doi.org/10.1016/j.procir.2022.03.059

    Article  Google Scholar 

  69. Feng Y, Yang P, Zhang YY, Shi LQ, Hang ZM, Feng YX (2022) Fractal model of thermal elasto-plastic contact of rough surfaces. J Cent South Univ 29:1500–1509. https://doi.org/10.1007/s11771-022-5017-6

    Article  Google Scholar 

  70. Wang X, Cheng X (2022) Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions. Evol Equ Control The 0:1–15. https://doi.org/10.3934/eect.2021064

    Article  Google Scholar 

  71. Gupta M, Mukhopadhyay S (2021) Analysis of harmonic plane wave propagation predicted by strain and temperature-rate-dependent thermoelastic model. Wave Random Complex 31:2481–2498. https://doi.org/10.1080/17455030.2020.1757178

    Article  MathSciNet  MATH  Google Scholar 

  72. Shi H, Zhao X, Jiang X (2019) Current research on the application of slip line field theory in the orthogonal cutting process. JSCUT 47:14–31. https://doi.org/10.12141/j.issn.1000-565X.180133

    Article  Google Scholar 

  73. Xiong G-J, Chen J-J, Wang J-H, Li M-G (2019) New axisymmetric slip-line theory for metal and its application in indentation problem. J Eng Mech 145. https://doi.org/10.1061/(asce)em.1943-7889.0001658

  74. Zhou R, Yang W (2016) Analytical modeling of residual stress in helical end milling of nickel-aluminum bronze. Int J Adv Manuf Tech 89:987–996. https://doi.org/10.1007/s00170-016-9145-8

    Article  Google Scholar 

  75. Fergani O, Jiang X, Shao Y, Welo T, Yang J, Liang S (2015) Prediction of residual stress regeneration in multi-pass milling. Int J Adv Manuf Tech 83:1153–1160. https://doi.org/10.1007/s00170-015-7464-9

    Article  Google Scholar 

  76. Yue C, Hao X, Ji X, Liu X, Liang SY, Wang L, Yan F (2020) Analytical prediction of residual stress in the machined surface during milling. Metals 10:1–20. https://doi.org/10.3390/met10040498

    Article  Google Scholar 

  77. Zhang Z, Zhang Z, Zhang D, Luo M (2020) Milling distortion prediction for thin-walled component based on the average MIRS in specimen machining. Int J Adv Manuf Tech 111:3379–3392. https://doi.org/10.1007/s00170-020-06281-y

    Article  Google Scholar 

  78. Yi S, Wu Y, Gong H, Peng C, He Y (2021) Experimental analysis and prediction model of milling-induced residual stress of aeronautical aluminum alloys. Appl S 11:1–15. https://doi.org/10.3390/app11135881

    Article  Google Scholar 

  79. Cai L, Feng Y, Liang SY (2022) Analytical modeling of residual stress in end-milling with minimum quantity lubrication. Mech Ind 23:1–13. https://doi.org/10.1051/meca/2022002

    Article  Google Scholar 

  80. Jiang X, Wang Y, Ding Z, Li H (2017) An approach to predict the distortion of thin-walled parts affected by residual stress during the milling process. Int J Adv Manuf Tech 93:4203–4216. https://doi.org/10.1007/s00170-017-0811-2

    Article  Google Scholar 

  81. Reimer A, Luo XC (2018) Prediction of residual stress in precision milling of AISI H13 steel. Procedia CIRP 71:329–334. https://doi.org/10.1016/j.procir.2018.05.036

    Article  Google Scholar 

  82. Wang Z, Zhou J, Ren J, Shu A (2022) Predicting surface residual stress for multi-axis milling of Ti-6Al-4V titanium alloy in combined simulation and experiments. Materials (Basel) 15. https://doi.org/10.3390/ma15186471

  83. Vovk A, Solter J, Karpuschewski B (2020) Finite element simulations of the material loads and residual stresses in milling utilizing the CEL method. Procedia CIRP 87:539–544. https://doi.org/10.1016/j.procir.2020.03.005

    Article  Google Scholar 

  84. Rahul Y, Vipindas K, Mathew J (2021) Methodology for prediction of sub-surface residual stress in micro end milling of Ti-6Al-4V alloy. J Manuf Process 62:600–612. https://doi.org/10.1016/j.jmapro.2020.12.031

    Article  Google Scholar 

  85. Guo J, Fu H, Pan B, Kang R (2021) Recent progress of residual stress measurement methods: a review. Chinese J Aeronaut 34:54–78. https://doi.org/10.1016/j.cja.2019.10.010

    Article  Google Scholar 

  86. Rossini NS, Dassisti M, Benyounis KY, Olabi AG (2012) Methods of measuring residual stresses in components. Mater Design 35:572–588. https://doi.org/10.1016/j.matdes.2011.08.022

    Article  Google Scholar 

  87. Hirano M (1996) Investigation of the phase shift in x-ray forward diffraction using an x-ray interferometer. Phys Rev Lett 76:3735–3737. https://doi.org/10.1103/PhysRevLett.76.3735

    Article  Google Scholar 

  88. Ao S, Li C, Huang Y, Luo Z (2020) Determination of residual stress in resistance spot-welded joint by a novel X-ray diffraction. Measurement 161:1–5. https://doi.org/10.1016/j.measurement.2020.107892

    Article  Google Scholar 

  89. Righetti VAN, Campos TMB, Robatto LB, Rego RR, Thim GP (2020) Non-destructive surface residual stress profiling by multireflection grazing incidence X-ray diffraction: a 7050 Al alloy study. Exp Mech 60:475–480. https://doi.org/10.1007/s11340-019-00578-0

    Article  Google Scholar 

  90. Wang W, Yuan L, Li Y, Yang M, Zhang H, Zhang W (2020) Test method for residual stress analysis of the inner surface of small caliber Ti-3Al-2.5V tubing by X-ray diffraction. Vacuum 177:1–5. https://doi.org/10.1016/j.vacuum.2020.109371

    Article  Google Scholar 

  91. Roy T, Paradowska A, Abrahams R, Law M, Mutton P, Soodi M, Yan W (2020) Residual stress in laser cladded heavy-haul rails investigated by neutron diffraction. J Mater Process Tech 278. https://doi.org/10.1016/j.jmatprotec.2019.116511

  92. Jiang W, Yu Y, Zhang W, Xiao C, Woo W (2020) Residual stress and stress fields change around fatigue crack tip: neutron diffraction measurement and finite element modeling. Int J Pres Ves Pip 179:1–10. https://doi.org/10.1016/j.ijpvp.2019.104024

    Article  Google Scholar 

  93. Liu XS, Ma ZQ, Han DC, Lv RY, Fang HY (2013) Evaluation of uit on titanium alloy residual stress eliminating by ultrasonic residual stress measurement system. Rev Adv Mater Sci 33:266–269

    Google Scholar 

  94. Clark AV Jr (1985) On the use of acoustic birefringence to determine components of plane stress. Ultrasonics (UK) 23:21–30. https://doi.org/10.1016/0041-624x(85)90007-1

    Article  Google Scholar 

  95. Hurst MP (1993) Numerical diffraction coefficients for surface waves. Ieee T Antenn Propag 41:458–464. https://doi.org/10.1109/8.220977

    Article  Google Scholar 

  96. Ahn B, Lee H, Lee JS, Kim YY (2019) Topology optimization of metasurfaces for anomalous reflection of longitudinal elastic waves. Comput Method Appl M 357:1–27. https://doi.org/10.1016/j.cma.2019.112582

    Article  MathSciNet  MATH  Google Scholar 

  97. Hastenteufel M, Vetter M, Meinzer H-P, Wolf I (2006) Effect of 3D ultrasound probes on the accuracy of electromagnetic tracking systems. Ultrasound Med Biol 32:1359–1368. https://doi.org/10.1016/j.ultrasmedbio.2006.05.013

    Article  Google Scholar 

  98. Xu B, Liu H, Xu G, Xu C, Li J (2014) Mixed stress-displacement finite element method for laser-generated ultrasound. Laser Technol 38:230–235. https://doi.org/10.7510/jgjs.issn.1001-3806.2014.02.018

    Article  Google Scholar 

  99. Lin WB, Zhou HL, Destech Publicat I (2016) Application of stepwise regression in ultrasonic based pressure measurement. ICCA 252–257

  100. Song G, Lu D, Lu Y, Liu H, Gao Z, Wu B, He C (2016) Velocity measurements of cylindrical surface waves with a large aperture line-focus acoustic transducer. Measurement 90:103–109. https://doi.org/10.1016/j.measurement.2016.04.022

    Article  Google Scholar 

  101. Acevedo R, Sedlak P, Kolman R, Fredel M (2020) Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: state of the art review. J Mater Res Technol 9:9457–9477. https://doi.org/10.1016/j.jmrt.2020.05.092

    Article  Google Scholar 

  102. Liu H, Li Y, Li T, Zhang X, Liu Y, Liu K, Wang Y (2018) Influence factors analysis and accuracy improvement for stress measurement using ultrasonic longitudinal critically refracted (LCR) wave. Appl Acoust 141:178–187. https://doi.org/10.1016/j.apacoust.2018.07.017

    Article  Google Scholar 

  103. Tanala E, Bourse G, Fremiot M, De Belleval JF (1995) Determination of near surface residual stresses on welded joints using ultrasonic methods. Ndt&e Int 28:83–88. https://doi.org/10.1016/0963-8695(94)00013-A

    Article  Google Scholar 

  104. Han R-j, Wang J-y, Xu X-g, Hu X-b, Dong J, Li X-x, Li J, Jiang S-z, Wang L, Jiang M-h (2004) Polytype identification of SiC crystals by microRaman spectroscopy. J Synth Cryst (China) 33:877–881

    Google Scholar 

  105. Ma L, Qiu W, Fan X (2021) Stress/strain characterization in electronic packaging by micro-Raman spectroscopy: a review. Microelectron Reliab 118:1–9. https://doi.org/10.1016/j.microrel.2021.114045

    Article  Google Scholar 

  106. Elghazal H, Lormand G, Hamel A, Girodin D, Vincent A (2001) Microplasticity characteristics obtained through nano-indentation measurements: application to surface hardened steels. Mat Sci Eng A-Struct 303:110–119. https://doi.org/10.1016/s0921-5093(00)01852-9

    Article  Google Scholar 

  107. He M, Huang CH, Wang XX, Yang F, Zhang N, Li FG (2017) Assessment of the local residual stresses of 7050–T7452 aluminum alloy in microzones by the instrumented indentation with the Berkovich indenter. J Mater Eng Perform 26:4923–4932. https://doi.org/10.1007/s11665-017-2904-3

    Article  Google Scholar 

  108. Mathar J (1934) Determination of initial stresses by measuring the deformation around drilled holes. Iron Steel 249–256.

  109. Peng Y, Zhao J, Chen LS, Dong J (2021) Residual stress measurement combining blind-hole drilling and digital image correlation approach. J Constr Steel Res 176:1–7. https://doi.org/10.1016/j.jcsr.2020.106346

    Article  Google Scholar 

  110. Magnier A, Scholtes B, Niendorf T (2018) On the reliability of residual stress measurements in polycarbonate samples by the hole drilling method. Polym Test 71:329–334. https://doi.org/10.1016/j.polymertesting.2018.09.024

    Article  Google Scholar 

  111. Li H, Peng Y, Zhao J, Chen L-s, Dong J, Ashraf M, Corbi O, Yang P, Wang L, Corbi I (2019) DIC-hole drilling method for in-situ residual stress measurement. MATEC Web of Conf 275:1–5. https://doi.org/10.1051/matecconf/201927502004

    Article  Google Scholar 

  112. Schajer GS (1992) Non-uniform residual stress measurements by the hole drilling method. Strain 28:19–22. https://doi.org/10.1115/1.3226060

    Article  Google Scholar 

  113. Ren W, Li KY (2001) Incremental ring-core cutting around an interferometric strain/slope rosette for residual stress measurement. SPIE 4537:139–142. https://doi.org/10.1117/12.468804

    Article  Google Scholar 

  114. Moharrami R, Sadri M (2018) A procedure for high residual stresses measurement using the ring-core method. Strain 54:1–11. https://doi.org/10.1111/str.12270

    Article  Google Scholar 

  115. Ghaedamini R, Ghassemi A, Atrian A (2018) A comparative experimental study for determination of residual stress in laminated composites using ring core, incremental hole drilling, and slitting methods. Mater Res Express 6:1–22. https://doi.org/10.1088/2053-1591/aaee46

    Article  Google Scholar 

  116. Misra A, Peterson HA (1981) Examination of the ring method for determination of residual stresses. Exp Mech 21:268–272. https://doi.org/10.1007/BF02327016

    Article  Google Scholar 

  117. Huang HR, Li XY (2012) The deduction and application of correction formulas of three-dimensional residual stress with layer stripping method. Adv Mater Res 476–478:2608–2612. https://doi.org/10.4028/www.scientific.net/AMR.476-478.2608

    Article  Google Scholar 

  118. Vaidyanathan S, Finnie I (1971) Determination of residual stresses from stress intensity factor measurements. Trans ASME D J Basic Eng (USA) 93:242–246. https://doi.org/10.1115/1.3425220

    Article  Google Scholar 

  119. Prime MB (1999) Residual stress measurement by successive extension of a slot: the crack compliance method. Appl Mech Rev 52:75. https://doi.org/10.2172/481857

    Article  Google Scholar 

  120. Olson MD, Hill MR (2017) Two-dimensional mapping of in-plane residual stress with slitting. Exp Mech 58:151–166. https://doi.org/10.1007/s11340-017-0330-y

    Article  Google Scholar 

  121. Pisarev VS, Matvienko YG, Eleonsky SI, Odintsev IN (2017) Combining the crack compliance method and speckle interferometry data for determination of stress intensity factors and T-stresses. Eng Fract Mech 179:348–374. https://doi.org/10.1016/j.engfracmech.2017.04.029

    Article  Google Scholar 

  122. Zheng K, Liao W, Dong Q, Sun L (2018) Friction and wear on titanium alloy surface machined by ultrasonic vibration-assisted milling. J Braz Soc Mech Sci 40:1–12. https://doi.org/10.1007/s40430-018-1336-9

    Article  Google Scholar 

  123. Feng Y, Hsu F-C, Lu Y-T, Lin Y-F, Lin C-T, Lin C-F, Lu Y-C, Liang SY (2019) Residual stress prediction in ultrasonic vibration–assisted milling. Int J Adv Manuf Tech 104:2579–2592. https://doi.org/10.1007/s00170-019-04109-y

    Article  Google Scholar 

  124. Chen J, Ming W, An Q, Chen M (2020) Mechanism and feasibility of ultrasonic-assisted milling to improve the machined surface quality of 2D Cf/SiC composites. Ceram Int 46:15122–15136. https://doi.org/10.1016/j.ceramint.2020.03.047

    Article  Google Scholar 

  125. Xie W, Wang X, Liu E, Wang J, Tang X, Li G, Zhang J, Yang L, Chai Y, Zhao B (2022) Research on cutting force and surface integrity of TC18 titanium alloy by longitudinal ultrasonic vibration assisted milling. Int J Adv Manuf Tech 119:4745–4755. https://doi.org/10.1007/s00170-021-08532-y

    Article  Google Scholar 

  126. Liu X, Wang W, Jiang R, Xiong Y, Shan C (2022) Residual stress prediction in axial ultrasonic vibration–assisted milling in situ TiB2/7050Al MMCs. Int J Adv Manuf Tech 121:7591–7606. https://doi.org/10.1007/s00170-022-09845-2

    Article  Google Scholar 

  127. Ying N, Feng J, Bo Z, Guofu G, Jing-jing N (2020) Theoretical investigation of machining-induced residual stresses in longitudinal torsional ultrasonic–assisted milling. Int J Adv Manuf Tech 108:3689–3705. https://doi.org/10.1007/s00170-020-05495-4

    Article  Google Scholar 

  128. Zhang Z, Tong J, Zhao J, Jiao F, Zai P, Liu Z (2021) Experimental study on surface residual stress of titanium alloy curved thin-walled parts by ultrasonic longitudinal-torsional composite milling. Int J Adv Manuf Tech 115:1021–1035. https://doi.org/10.1007/s00170-021-07234-9

    Article  Google Scholar 

  129. Mustafa G, Liu J, Zhang F, Wang G, Yang Z, Harris M, Liu S, Liu X, Jin Z, Sun J (2019) Atmospheric pressure plasma jet assisted micro-milling of Inconel 718. Int J Adv Manuf Tech 103:4681–4687. https://doi.org/10.1007/s00170-019-03931-8

    Article  Google Scholar 

  130. Balbaa M, Nasr MNA, Elgamal H (2017) A sensitivity analysis on the effect of laser power on residual stresses when laser-assisted machining AISI 4340. Procedia CIRP 58:31–36. https://doi.org/10.1016/j.procir.2017.03.182

    Article  Google Scholar 

  131. Zhang H, Yan R, Deng B, Lin J, Yang M, Peng F (2022) Investigation on surface integrity in laser-assisted machining of Inconel 718 based on in-situ observation. Procedia CIRP 108:129–134. https://doi.org/10.1016/j.procir.2022.03.025

    Article  Google Scholar 

  132. Xu D, Liao Z, Axinte D, Sarasua JA, M’Saoubi R, Wretland A (2020) Investigation of surface integrity in laser-assisted machining of nickel based superalloy. Mater Design 194:1–16. https://doi.org/10.1016/j.matdes.2020.108851

    Article  Google Scholar 

  133. Zeng H, Hu X, Yang D (2023) Analytical modeling of residual stresses in laser-assisted milling AerMet100 steel. Opt Laser Technol 158. https://doi.org/10.1016/j.optlastec.2022.108931

  134. Balbaa MA, Nasr MNA (2015) Prediction of residual stresses after laser-assisted machining of Inconel 718 using SPH. Procedia CIRP 31:19–23. https://doi.org/10.1016/j.procir.2015.03.034

    Article  Google Scholar 

  135. Xu M, Li C, Kurniawan R, Park G, Chen J, Ko TJ (2022) Study on surface integrity of titanium alloy machined by electrical discharge-assisted milling. J Mater Process Tech 299:1–12. https://doi.org/10.1016/j.jmatprotec.2021.117334

    Article  Google Scholar 

  136. Cano-Salinas L, Sourd X, Moussaoui K, Le Roux S, Salem M, Hor A, Zitoune R (2023) Effect of process parameters of plain water jet on the cleaning quality, surface and material integrity of Inconel 718 milled by Abrasive Water Jet. Tribol Int 178. https://doi.org/10.1016/j.triboint.2022.108094

  137. Lin L, Liu Z, Zhuang W, Peng H (2020) Effects of pre-strain on the surface residual stress and corrosion behavior of an Al-Zn-Mg-Cu alloy plate. Mater Charact 160:1–21. https://doi.org/10.1016/j.matchar.2020.110129

    Article  Google Scholar 

  138. Ba K, Levesque J, Gakwaya A, Karganroudi SS (2021) Residual stress investigation of quenched and artificially aged aluminum alloy 7175. Int J Adv Manuf Tech 116:1537–1553. https://doi.org/10.1007/s00170-021-07520-6

    Article  Google Scholar 

  139. Wang J-S, Hsieh C-C, Lai H-H, Kuo C-W, Wu PT-Y, Wu W (2015) The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique. Mater Charact 99:248–253. https://doi.org/10.1016/j.matchar.2014.09.019

    Article  Google Scholar 

  140. Gao H, Wu S, Wu Q, Li B, Gao Z, Zhang Y, Mo S (2020) Experimental and simulation investigation on thermal-vibratory stress relief process for 7075 aluminium alloy. Mater Design 195:1–29. https://doi.org/10.1016/j.matdes.2020.108954

    Article  Google Scholar 

  141. Maleki E, Unal O, Reza Kashyzadeh K (2019) Efficiency analysis of shot peening parameters on variations of hardness, grain size and residual stress via Taguchi approach. Met Mater Int 25:1436–1447. https://doi.org/10.1007/s12540-019-00290-7

    Article  Google Scholar 

  142. Zhang Y, Lai F, Qu S, Ji V, Liu H, Li X (2020) Effect of shot peening on residual stress distribution and tribological behaviors of 17Cr2Ni2MoVNb steel. Surf Coat Tech 386:1–10. https://doi.org/10.1016/j.surfcoat.2020.125497

    Article  Google Scholar 

  143. Wu J, Liu H, Wei P, Zhu C, Lin Q (2020) Effect of shot peening coverage on hardness, residual stress and surface morphology of carburized rollers. Surf Coat Tech 384:1–8. https://doi.org/10.1016/j.surfcoat.2019.125273

    Article  Google Scholar 

  144. Maleki E, Farrahi GH, Reza Kashyzadeh K, Unal O, Gugaliano M, Bagherifard S (2020) Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: experimental and numerical simulation. Met Mater Int 27:2575–2591. https://doi.org/10.1007/s12540-020-00890-8

    Article  Google Scholar 

  145. Maleki E, Unal O, Guagliano M, Bagherifard S (2022) Analysing the fatigue behaviour and residual stress relaxation of gradient nano-structured 316L steel subjected to the shot peening via deep learning approach. Met Mater Int 28:112–131. https://doi.org/10.1007/s12540-021-00995-8

    Article  Google Scholar 

Download references

Funding

This research has been supported by the project supported by the Key Project of National Defense Basic Scientific Research (No.JCKY2020203B031), and the National Natural Science Foundation of China (No. 52175427).

Author information

Authors and Affiliations

Authors

Contributions

Xiaohui Jiang and Yuxi Wei contributed significantly in analyzing and summarizing and writing the manuscript. Jinhua Zhou, Ke Zhan, and Zishan Ding helped perform the analysis with constructive discussions. Steven Y. Liang participated in the mentoring.

Corresponding author

Correspondence to Xiaohui Jiang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

The participants have consented to the submission of the case report to the journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Wei, Y., Zhou, J. et al. Residual stress generation and evaluation in milling: a review. Int J Adv Manuf Technol 126, 3783–3812 (2023). https://doi.org/10.1007/s00170-023-11394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11394-1

Keywords

Navigation