Skip to main content
Log in

Thermal properties of 3D printed products from the most common polymers

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This research focuses on four thermal characteristics of 3D products printed from the fourteen most common filaments. The softening temperature, coefficient of linear thermal expansion (CLTE), irreversible thermal strain, and thermal conductivity of the 3D printed samples at various measurement directions were evaluated, systematised, and analysed. Semi-crystalline and amorphous, electrically conductive and thermochromic polymer filaments were investigated. Four sets of samples were printed by the Ultimaker S5 3D printer. Printer settings provided the unidirectional orientation of all filament fibres in all specimens and uniform within any specimen’s cross section to investigate the anisotropy of their properties. For investigation of the thermal characteristic of the 3D printed samples, thermomechanical analysis (TMA), differential scanning calorimetry (DSC) methods, and method for measurement of the thermal conductivity (Hot-Disk) were used. The penetration test showed that polyetherimide samples had the highest heat resistance, while the samples from polylactic acid (PLA) had the lowest one. The results of TMA demonstrated that the samples of polypropylene (PP), thermoplastic polyurethane (TPU), and Polyamide had the highest CLTE. In general, semi-crystalline polymers had a higher coefficient of thermal expansion than amorphous ones. During the TMA, almost all samples showed an irreversible thermal strain. PLA Red and Co-polyester showed significant shrinkage of 6–9% in the print direction and expansion in the build direction compared to other samples. Samples of PLA LAVA, acrylonitrile butadiene styrene, polycarbonate, PP, and TPU filaments demonstrated more stable thermal behaviour. The thermal conductivity analysis showed that almost all specimens had a certain degree of anisotropy. The highest thermal conductivity value was obtained for print direction for materials with pronounced anisotropic behaviour, except for polyamide samples. DSC study of post-printing relaxation of the structure of printed samples showed that rapidly cooled samples of semi-crystalline PLA material had a non-equilibrium structure with a low degree of crystallinity. Such structures changed with the time up to 400 h after printing, which also affected their stiffness and strength. The annealing of printed samples at temperatures of cold crystallisation allowed a significant increase in their crystallinity degree, thus approaching the upper limit of this degree for semi-crystalline PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ISO/ASTM 52900 (2015) Standard terminology for additive manufacturing – general principles – terminology. ASTM International, West Conshohocken, PA

  2. Bozkurt Y, Karayel E (2021) 3D printing technology; methods, biomedical applications, future opportunities and trends. J Mat Res and Tech 14:1430–1450. https://doi.org/10.1016/j.jmrt.2021.07.050

    Article  Google Scholar 

  3. Buchanan C, Gardner L (2019) Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng Struct 180:332–348. https://doi.org/10.1016/j.engstruct.2018.11.045

    Article  Google Scholar 

  4. Curran S, Chambon P, Lind R, Love L, Wagner R, Whitted S et al (2016) Big area additive manufacturing and hardware-in-the-loop for rapid vehicle powertrain prototyping: a case study on the development of a 3-D-printed Shelby cobra. SAE Tech Papers 0328. https://doi.org/10.4271/2016-01-0328

  5. Zadpoor A, Malda J (2016) Additive manufacturing of biomaterials, tissues, and organs. Ann Biomed Eng 45:1–11. https://doi.org/10.1007/s10439-016-1719-y

    Article  Google Scholar 

  6. Kristiawan R, Imaduddin F, Ariawan D, Sabino U, Arifin Z (2021) A review on the fused deposition modeling (FDM) 3D printing: filament processing, materials, and printing parameters. Open Eng 11:639–649. https://doi.org/10.1515/eng-2021-0063

    Article  Google Scholar 

  7. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B: Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  8. Trhlíková L, Zmeskal O, Psencik P, Florian P (2016) Study of the thermal properties of filaments for 3D printing. AIP Conf Proc 1752(1):040027. https://doi.org/10.1063/1.4955258

    Article  Google Scholar 

  9. Shemelya C, De La Rosa A, Torrado AR, Yu K, Domanowski J, Bonacuse PJ et al (2017) Anisotropy of thermal conductivity in 3D printed polymer matrix composites for space based cube satellites. Addit Manuf 16:186–196. https://doi.org/10.1016/j.addma.2017.05.012

    Article  Google Scholar 

  10. Zhang W, Wu AS, Sun J, Quan Z, Gu B, Sun B et al (2017) Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens. Composites Sci Technol 150:102–110. https://doi.org/10.1016/j.compscitech.2017.07.017

    Article  Google Scholar 

  11. D’Amico A, Debaie A, Peterson A (2017) Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modeling. Rapid Prototyp 23:00–00. https://doi.org/10.1108/RPJ-05-2016-0077

    Article  Google Scholar 

  12. Agag T, Koga T, Takeichi T (2001) Studies on thermal and mechanical properties of polyimide–clay nanocomposites. Polymer 42(8):3399–3408. https://doi.org/10.1016/S0032-3861(00)00824-7

    Article  Google Scholar 

  13. D’Amico T, Barrett C, Presing J, Peterson AM (2019) Micromechanical modeling of irreversible thermal strain. Addit Manuf 27:91–98. https://doi.org/10.1016/j.addma.2019.02.019

    Article  Google Scholar 

  14. Zohdi N, Yang R (2021) Material anisotropy in additively manufactured polymers and polymer composites: a review. Polymers 13(19):3368. https://doi.org/10.3390/polym13193368

    Article  Google Scholar 

  15. Spoerk M, Savandaiah C, Arbeiter F, Traxler G, Cardon L, Holzer C et al (2018) Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Composites Part A: App Sci Manuf 113:95–104. https://doi.org/10.1016/j.compositesa.2018.06.018

    Article  Google Scholar 

  16. Ibrahim Y, Elkholy A, Schofield JS, Melenka GW, Kempers R (2020) Effective thermal conductivity of 3D-printed continuous fiber polymer composites. Adv Manuf: Polym Comp Sci 6(1):17–28. https://doi.org/10.1080/20550340.2019.1710023

    Article  Google Scholar 

  17. Luo F, Yang S, Yan P, Li H, Huang B, Qian Q et al (2022) Orientation behavior and thermal conductivity of liquid crystal polymer composites based on three-dimensional printing. Composites Part A: App Sci and Manuf 160:107059. https://doi.org/10.1016/j.compositesa.2022.107059

    Article  Google Scholar 

  18. Hassen AA, Dinwiddie RB, Kim S, Tekinalp HL, Kumar V, Lindahl J et al (2022) Anisotropic thermal behavior of extrusion-based large scale additively manufactured carbon-fiber reinforced thermoplastic structures. Polym Compos 43(6):3678–3690. https://doi.org/10.1002/pc.26645

    Article  Google Scholar 

  19. Elkholy A, Kempers R (2022) An accurate steady-state approach for characterizing the thermal conductivity of Additively manufactured polymer composites. Case Stud Therm Eng 31:101829. https://doi.org/10.1016/j.csite.2022.101829

    Article  Google Scholar 

  20. Elkholy A, Rouby M, Kempers R (2019) Characterization of the anisotropic thermal conductivity of additively manufactured components by fused filament fabrication. Prog in Addit Manuf 4(4):497–515. https://doi.org/10.1007/s40964-019-00098-2

    Article  Google Scholar 

  21. Ravoori D, Alba L, Prajapati H, Jain A (2018) Investigation of process-structure-property relationships in polymer extrusion based additive manufacturing through in situ high speed imaging and thermal conductivity measurements. Addit Manuf 23:132–139. https://doi.org/10.1016/j.addma.2018.07.011

    Article  Google Scholar 

  22. Prajapati H, Chalise D, Ravoori D, Taylor RM, Jain A (2019) Improvement in build-direction thermal conductivity in extrusion-based polymer additive manufacturing through thermal annealing. Addit Manuf 26:242–249. https://doi.org/10.1016/j.addma.2019.01.004

    Article  Google Scholar 

  23. ASTM E831-06 (2021) Standard test method for linear thermal expansion of solid materials by thermomechanical analysis. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/E0831-06

  24. Guo R, Ren Z, Bi H, Xu M, Cai L (2019) Electrical and Thermal Conductivity of Polylactic Acid (PLA)-Based Biocomposites by incorporation of nano-graphite fabricated with fused deposition modeling. Polymers 11:549. https://doi.org/10.3390/polym11030549

    Article  Google Scholar 

  25. Prajapati H, Ravoori D, Woods R (2018) Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM). Addit Manuf 21:84–90. https://doi.org/10.1016/j.addma.2018.02.019

    Article  Google Scholar 

  26. Flaata T, Michna GJ, Letcher T (2017) Thermal conductivity testing apparatus for 3D printed materials. ASME 2017 Heat Transfer Summer Conference, p V002T15A006. https://doi.org/10.1115/HT2017-4856

  27. Laureto J, Tomasi J, King J, Pearce J (2017) Thermal properties of 3-D printed polylactic acid-metal composites. Prog in Addit Manuf 2(1):57–71. https://doi.org/10.1007/s40964-017-0019-x

    Article  Google Scholar 

  28. Filament Properties Table. https://www.simplify3d.com/support/materials-guide/properties-table/. Accessed 20 Apr 2022

  29. Coefficient of Linear Thermal Expansion. https://omnexus.specialchem.com/polymer-properties/properties/coefficient-of-linear-thermal-expansion. Accessed 21 Apr 2022

  30. Sonsalla T, Moore AL, Meng WJ, Radadia AD, Weiss L (2018) 3-D printer settings effects on the thermal conductivity of acrylonitrile butadiene styrene (ABS). Polym Test 70:389–395. https://doi.org/10.1016/j.polymertesting.2018.07.018

    Article  Google Scholar 

  31. Liu J, Li W, Guo Y, Zhang H, Zhang Z (2019) Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing. Compos Part A: App Sci Manuf 120:140–146. https://doi.org/10.1016/j.compositesa.2019.02.026

    Article  Google Scholar 

  32. Hodge IM, Berens AR (1982) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromol 15(3):762–770. https://doi.org/10.1021/ma00231a016

    Article  Google Scholar 

  33. Yu W, Wang X, Ferraris E, Zhang J (2019) Melt crystallization of PLA/Talc in fused filament fabrication. Mat Des 182:108013. https://doi.org/10.1016/j.matdes.2019.108013

    Article  Google Scholar 

  34. Tábi T, Sajó I, Szabó F, Luyt A, Kovács J (2010) Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett 4(10):659–668. https://doi.org/10.3144/expresspolymlett.2010.80

    Article  Google Scholar 

  35. Mróz P, Białas S, Mucha M, Kaczmarek H (2013) Thermogravimetric and DSC testing of poly(lactic acid) nanocomposites. Thermochim Acta 573:186–192. https://doi.org/10.1016/j.tca.2013.09.012

    Article  Google Scholar 

  36. Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338. https://doi.org/10.1016/j.polymdegradstab.2014.01.002

    Article  Google Scholar 

  37. Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255. https://doi.org/10.1002/app.27261

    Article  Google Scholar 

  38. Kaczmarek H, Nowicki M, Vuković-Kwiatkowska I, Nowakowska S (2013) Crosslinked blends of poly(lactic acid) and polyacrylates: AFM, DSC and XRD studies. J Polym Res 20(3):91. https://doi.org/10.1007/s10965-013-0091-y

    Article  Google Scholar 

  39. Day M, Nawaby A, Liao X (2006) A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites. J Therm Anal Calorim 86(3):623–629. https://doi.org/10.1007/s10973-006-7717-9

    Article  Google Scholar 

  40. García NL, Lamanna M, D’Accorso N, Dufresne A, Aranguren M, Goyanes S (2012) Biodegradable materials from grafting of modified PLA onto starch nanocrystals. Polym Degrad Stab 97(10):2021–2026. https://doi.org/10.1016/j.polymdegradstab.2012.03.032

    Article  Google Scholar 

  41. Drummer D, Cifuentes‐Cuéllar S, Rietzel D (2012) Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyp 18(6):500–507. https://doi.org/10.1108/13552541211272045

  42. Wootthikanokkhan J, Cheachun T, Sombatsompop N, Thumsorn S, Kaabbuathong N, Wongta N et al (2013) Crystallization and thermomechanical properties of PLA composites: Effects of additive types and heat treatment. J Appl Polym Sci 129(1):215–223. https://doi.org/10.1002/app.38715

    Article  Google Scholar 

  43. Fu ZJ, Huang HF, Yu LS, Sun YF (2013) DSC studies on the dyeing properties of PLA fiber. Adv Mat Res 750–752:1393–1396. https://doi.org/10.4028/www.scientific.net/AMR.750-752.1393

    Article  Google Scholar 

  44. Běhálek L, Maršálková M, Lenfeld P, Habr J, Bobek J, Seidl M (2013) Study of crystallization of polylactic acid composites and nanocomposites with natural fibres by DSC method. NANOCON 2013 - Conference Proceedings, 5th International Conference pp 746–751

  45. Cao X, Mohamed A, Gordon S, Willett J, Sessa D (2003) DSC study of biodegradable poly (lactic acid) and poly (hydroxy ester ether) blends. Thermochim Acta 406(1–2):115–127. https://doi.org/10.1016/S0040-6031(03)00252-1

    Article  Google Scholar 

  46. Zile E, Zeleniakiene D, Aniskevich A (2022) Characterization of polylactic acid parts produced using fused deposition modelling. Mech Compos Mater 58(2):169–180. https://doi.org/10.1007/s11029-022-10021-6

    Article  Google Scholar 

  47. Pan P, Zhu B, Kai W, Dong T, Inoue Y (2008) Polymorphic transition in disordered poly(l-lactide) crystals induced by annealing at elevated temperatures. Macromol 41(12):4296–4304. https://doi.org/10.1021/ma800343g

    Article  Google Scholar 

  48. Dusunceli N, Colak OU (2008) Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers. Int J Plast 24(7):1224–1242. https://doi.org/10.1016/j.ijplas.2007.09.003

    Article  MATH  Google Scholar 

  49. Lona Batista N, Olivier P, Bernhart G, Rezende Cerqueira M, Botelho Cocchieri E (2016) Correlation between degree of crystallinity, morphology and mechanical properties of PPS/carbon fiber laminates. Mat Res 19(1):195–201. https://doi.org/10.1590/1980-5373-MR-2015-0453

    Article  Google Scholar 

Download references

Funding

This research was supported by ERDF Project No. 1.1.1.1/19/A/031 “OPTITOOL, Decision Tool for Optimal Design of Smart Polymer Nanocomposite Structures Produced by 3D Printing”.

Author information

Authors and Affiliations

Authors

Contributions

Irina Bite: conceptualisation, formal analysis, writing—original draft, writing—review & editing.

Sergejs Tarasovs: conceptualisation, methodology, software, formal analysis, writing—original draft, writing—review & editing.

Sergejs Vidinejevs: conceptualisation, formal analysis, writing—original draft, writing—review & editing.

Laima Vevere: investigation.

Jevgenijs Sevcenko: investigation.

Andrey Aniskevich: conceptualisation, writing—review & editing, supervision, funding acquisition.

Corresponding author

Correspondence to Irina Bute.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bute, I., Tarasovs, S., Vidinejevs, S. et al. Thermal properties of 3D printed products from the most common polymers. Int J Adv Manuf Technol 124, 2739–2753 (2023). https://doi.org/10.1007/s00170-022-10657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10657-7

Keywords

Navigation