Skip to main content
Log in

Full life-cycle cutting force prediction in ball helical milling based on oblique cutting analysis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In order to predict the change of cutting force in ball helical milling of titanium alloy, considering the kinematics of helical milling and the geometric model of a ball end cutter, the cutting process is divided into three stages, cutting-in, steady, and cutting-out stages, and the shape and volume of undeformed chip in different stages are described. Then, according to the oblique cutting theory and the principle of maximum shear stress, the constraint relationships among the parameters such as friction angle, shear angle, and shear stress in the micro-element are established. Thus, based on the position parameters at different stages, a three-direction full life-cycle cutting force model is presented, and the cutting force coefficients are identified and characterized as Weibull functions of instantaneous undeformed chip thickness. Finally, the predicted cutting forces are compared with the experimental values. The results show that the average and maximum errors are less than 19% which verify the accuracy of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Abbreviations

\({n}_{\text{rot}}\text{(rpm)}\) :

Rotation speed

\({n}_{\text{orb}}\text{(rpm)}\) :

Orbital revolution speed

\({v}_{\text{t}}\text{, }{v}_{\text{a}}\text{(m/min)}\) :

Tangential and axial feed speeds

\({f}_{\text{t}}\text{, }{f}_{\text{a}}\text{(mm/t)}\) :

Tangential and axial feed rates per tooth

\({R}_{\text{h}}\text{,}{R}_{\text{t}}\text{(mm)}\) :

Radii of hole and tool

N :

Tooth number of the tool

\(\gamma ({\text{radian}})\) :

Helix angle of the tool trajectory

\({a}_{\text{o}}\text{(mm/orb)}\) :

Axial depth of cut per orbital revolution

\(i\text{ (radian)}\) :

Helix angle of the tool

z(mm):

Axial height of point P

\({z}_{1}\text{,}{z}_{2}\text{(mm)}\) :

Axial depths of cut at time t and t-torb

\({R}_{\text{s}}(z)({\text{mm}})\) :

Radial distance of point P

\(\kappa (z)({\text{radian}})\) :

Axial immersion angle of point P

\(\psi (z)({\text{radian}})\) :

Radial lag angle of point P

\({\xi }_{\text{j}}(z),{\theta }_{\text{j}}(z)({\text{radian}})\) :

Radial position angles of point P in \(o-xyz\text{ and }a-{x}_{\text{a}}{y}_{\text{a}}{z}_{\text{a}}\)

\(t({\text{s}})\) :

Tool movement time

\(e({\text{mm}})\) :

Eccentricity

\(\zeta ({\text{radian}})\) :

Tool orbital revolution angle

\({\zeta }_{0}({\text{radian}})\) :

Initial angle of tool orbital revolution angle

\({F}_{\text{X}}\text{,}{F}_{\text{Y}}\text{,}{F}_{\text{Z}}\text{(N)}\) :

Cutting forces in the x, y, z directions

\({H}_{\text{t}}\text{(mm)}\) :

Workpiece thickness

\({\text{d}}S({\text{mm}})\) :

Discrete cutting arc length

\({\text{d}}b({\text{mm}})\) :

Projection length of the micro-element along the cutting speed direction

\({h}_{\text{j}}({\text{mm}})\) :

Instantaneous undeformed chip thickness

\({F}_{\text{d}}(t)({\text{N}})\) :

Indentation force

\(\Delta S({\text{mm}}^{2})\) :

Cross-section area of the material to be cut

\({K}_{\text{db}}{\text{(N/mm}}^{2}\text{)}\) :

Indentation force coefficient

\({K}_{\text{tc}},{K}_{\text{rc}},{K}_{\text{ac}}({\text{N/mm}}^{2})\) :

Shear force coefficients in tangential,radial and axial directions

\({K}_{\text{te}},{K}_{\text{re}},{K}_{\text{ae}}(\text{N/mm})\) :

Edge force coefficients in tangential,radial and axial directions

\(\alpha ,{\alpha }_{\text{n}}({\text{radian}})\) :

Rake and normal rake angles

\({\beta }_{\text{i}},{\beta }_{\text{n}}\text{(radian)}\) :

Friction and normal friction angles

\({\varphi }_{\text{i}},{\varphi }_{\text{n}}({\text{radian}})\) :

Shear and normal shear angles

\(\tau ({\text{MPa}})\) :

Shear stress

\({S}_{\text{s}}{\text{(mm}}^{2}\text{)}\) :

Shear area

\(\eta ({\text{radian}})\) :

Chip flow angle

\({r}_{\text{e}}({\text{mm}}^{-3})\) :

Edge radius of the tool

\({\text{d}}{F}_{\text{j,z}}\text{,d}{F}_{\text{s,j,z}}\text{,d}{F}_{\text{f, j, z}}\text{,d}{F}_{\text{n, j, z}}\text{(N)}\) :

Resultant,shear,friction, and normal micro forces applied at the chip by the flute \({j}_{\text{th}}\) at an axial depth of z

\({\text{d}}{F}_{\text{t,j,z}},{\text{d}}{F}_{\text{r,j,z}},{\text{d}}{F}_{\text{a,j,z}}\text{(N)}\) :

Tangential,radial and axial micro forces for the flute j at an axial depth of z

\({\text{d}}{F}_{\text{tn,j,z}},{\text{d}}{F}_{\text{rn,j,z}},{\text{d}}{F}_{\text{an,j,z}}\text{(N)}\) :

Projections of d \({F}_{\text{t,j,z}},{\text{d}}{F}_{\text{r,j,z}},\) and \({\text{d}}{F}_{\text{a,j,z}}\) on normal plane

\({A}_{1}\text{,}{A}_{2}\text{,}{A}_{3}\text{,}T\) :

Transformation matrixs

\({\phi }_{\text{i}}\text{(radian)}\) :

Angle between \({\text{d}}{F}_{\text{j,z}}\) and the normal plane

\({\phi }_{\text{n}}\text{(radian)}\) :

Angle between the projection of \({\text{d}}{F}_{\text{j,z}}\) on the normal plane and the cutting plane

References

  1. Machado AR, Wallbank J (1990) Machining of titanium and its alloys-a review. Proc Inst Mech Eng B J Eng Manuf 204(1):53–60

    Article  Google Scholar 

  2. Pereira RBD, Brando LC, Paiva AP, Ferreira JR, Davim JP (2017) A review of helical milling process. Int J Mach Tools Manuf 120:27–48

    Article  Google Scholar 

  3. Barman A, Adhikari R, Bolar G (2020) Evaluation of conventional drilling and helical milling for processing of holes in titanium alloy Ti6Al4V. Mater Today Proc 28:2295–2300

    Article  Google Scholar 

  4. Brinksmeier E, Fangmann S, Meyer I (2008) Orbital drilling kinematics. Prod Eng Res Devel 2(3):277–283

    Article  Google Scholar 

  5. Rey PA, Ledref J, Senatore J, Landon Y (2016) Modelling of cutting forces in orbital drilling of titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 106:75–88

    Article  Google Scholar 

  6. Wan M, Du YX, Zhang WH, Yang Y (2020) Cutting force modeling in helical milling process of unidirectional CFRP. Acta Aeronaut Astronaut Sin 42(10):1–15 (in Chinese)

    Google Scholar 

  7. Ozturk OM, Kilic ZM, Altintas Y (2018) Mechanics and dynamics of orbital drilling operations. Int J Mach Tools Manuf 129:37–47

    Article  Google Scholar 

  8. Denkena B, Boehnke D, Dege JH (2008) Helical milling of CFRP-titanium layer compounds. CIRP J Manuf Sci Technol 1:64–69

    Article  Google Scholar 

  9. Tukora B, Szalay T (2011) Real-time cutting force prediction and cutting force coefficient determination during machining processes. Adv Mat Res 223:85–92

    Google Scholar 

  10. Budak E, Altintas Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. J Manuf Sci Eng 118:216–224

    Article  Google Scholar 

  11. Wang MH, Gao L, Zheng YH (2014) An examination of the fundamental mechanics of cutting force coefficients. Int J Mach Tools Manuf 78:1–7

    Article  Google Scholar 

  12. Wan M, Zhang WH, Dang JW, Yang Y (2009) New procedures for calibration of instantaneous cutting force coefficients and cutter runout parameters in peripheral milling. Int J Mach Tools Manuf 49:1144–1151

    Article  Google Scholar 

  13. Lee P, Altintas Y (1996) Prediction of ball-end milling forces from orthogonal cutting data. Int J Mach Tools Manuf 36:1059–1072

    Article  Google Scholar 

  14. Srinivasa YV, Shunmugam MS (2013) Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int J Mach Tools Manuf 67:18–27

    Article  Google Scholar 

  15. Luo ZW, Zhao WX, Jiao L, Wang T, Yan P, Wang XB (2016) Cutting force prediction in end milling of curved surfaces based on oblique cutting model. Int J Adv Manuf Technol 89:1025–1038

    Article  Google Scholar 

  16. Olvera D, Lacallede LNL, Urbikain G, Lamikiz A, Rodal P, Zamakona I (2012) Hole making using ball helical milling on titanium alloy. Mach Sci Technol 16:173–188

    Article  Google Scholar 

  17. Wang HY, Tao KX, Jin T (2021) Modeling and estimation of cutting forces in ball helical milling process. Int J Adv Manuf Technol 117(9–10):2807–2818

    Article  Google Scholar 

  18. Dong ZG, Gao Y, Kang RK, Yang GL, Bao Y (2021) Hole diameter deviation in helical milling of titanium alloy. Acta Aeronaut Astronaut Sin 42(03):414–422 (in Chinese)

    Google Scholar 

  19. Senthilkumar M, Prabukarthi A, Krishnaraj V (2013) Study on tool wear and chip formation during drilling carbon fiber reinforced polymer (CFRP)/titanium alloy (Ti6Al4V) stacks. Procedia Eng 64:582–592

    Article  Google Scholar 

  20. Tuysuz O, Altintas Y, Feng HY (2013) Prediction of cutting forces in three and five-axis ball-end milling with tool indentation effect. Int J Mach Tools Manuf 66:66–81

    Article  Google Scholar 

  21. Abdelmoneim MES, Scrutton RF (1974) Tool edge roundness and stable build-up formation in finish machining. Trans ASME J Eng Ind 96:1258–1267

    Article  Google Scholar 

  22. Shang S, Qin XD, Li JH, Li SP, Li H, Huang T, Jin Y, Sun D (2018) Modelling of cutting forces and researching calibration method in helical milling. Int J Adv Manuf Technol 94:2949–2960

    Article  Google Scholar 

Download references

Funding

This project has received funding from the Natural Science Foundation of Hebei Province, China (Grant No. E2020501014).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Haiyan Wang.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Wang, H. Full life-cycle cutting force prediction in ball helical milling based on oblique cutting analysis. Int J Adv Manuf Technol 124, 1623–1638 (2023). https://doi.org/10.1007/s00170-022-10402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10402-0

Keywords

Navigation