Skip to main content
Log in

An approach to enhancing machining accuracy of five-axis machine tools based on a new sensitivity analysis method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Identification of key geometric errors is an essential prerequisite for improving the machining accuracy of five-axis machine tools. This paper presents a new sensitivity analysis (SA) method to extract key geometric errors, and then to improve the machining performance of machine tools by compensating key geometric error components. Development of geometric error prediction model is involved to obtain geometric error values at arbitrary positions at first. Based on the multi-body system theory and flank milling theory, the machining error model is developed, which considers 37 geometric errors. Then, a new SA method is introduced by taking the machining error model as sensitivity analysis model and taking the geometric errors as analytical factors. Meanwhile, a sensitivity index, which has the characteristics of simple expression and clear physical meaning, is proposed, i.e., the peak value of the machining error caused by each geometric error. Moreover, the simulations analysis is carried out to obtain the sensitivity coefficient of each geometric error and the key error components. Finally, the validity and correctness of the proposed method are demonstrated by the experiments. Furthermore, the SA method can be extended to multi-axis machine tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Code availability

All code of this study is available from the corresponding author on reasonable request.

Abbreviations

SA:

Sensitivity analysis

GSA:

Global sensitivity analysis

PIGEs:

Position-independent geometric errors

PDGEs:

Position-dependent geometric errors

MBS:

Multi-body system

W:

Workpiece

T:

Tool

CMM:

Coordinate measuring machine

S i :

Sensitivity

SN i :

The sensitivity coefficient

G :

The geometric error vector

D :

Position vector of each moving axis

l :

Length of the cutting tool

E :

The volumetric error model

\({{\varvec{e}}}_{i}\) :

Machining error caused by ith geometric error

d :

The tool radius

\({-{\varvec{l}}}_{k}\) :

The tool length corresponding to the kth cutting point

\({}_{j}{}^{i}{T}_{p}\) :

The ideal static transformation matrices between the adjacent bodies of machine tool

\({}_{j}{}^{i}{T}_{pe}\) :

The actual static transformation matrices between the adjacent bodies of machine tool

\({}_{j}{}^{i}{T}_{s}\) :

The ideal motion transformation matrices between the adjacent bodies of machine tool

\({}_{j}{}^{i}{T}_{se}\) :

The actual motion transformation matrices between the adjacent bodies of machine tool

\({E}_{v}\left(v=x,y,z\right)\) :

The component of volumetric error in the v-direction

\({e}_{v}\left(v=x,y,z\right)\) :

The component of machining error in the v-direction

\({{\varvec{r}}}_{wjk}^{i}\) :

Ideal position vector of the tool center point corresponding to the kth cutting point in the workpiece coordinate system

\({{\varvec{r}}}_{tjk}\) :

Position vector of the tool center point corresponding to the kth cutting point in the tool coordinate system

\({{\varvec{n}}}_{sjk}\) :

Unit normal vector of the workpiece at the kth cutting point

\({{\varvec{r}}}_{wjk}\) :

Actual position vector of the tool center point corresponding to the kth cutting point in the workpiece coordinate system

\({{\varvec{u}}}_{jk}\) :

Actual cutting point of machined workpiece

\(H\) :

Position vector of the body reference coordinate system origin of each body

\({{\varvec{u}}}_{jk}^{i}\) :

Ideal cutting point of machined workpiece

\({{\varvec{r}}}_{w}\) :

Position vector of the tool center point in the workpiece coordinate system in the actual machining process

\({{\varvec{r}}}_{t}\) :

Position vector of tool center point in tool coordinate system

\({{\varvec{r}}}_{w}^{i}\) :

Position vector of the tool center point in the workpiece coordinate system in the ideal machining process

References 

  1. Xia C, Wang S, Sun S, Ma C, Lin X, Huang X (2019) An identification method for crucial geometric errors of gear form grinding machine tools based on tooth surface posture error model. Mech Mach Theory 138:76–94

    Article  Google Scholar 

  2. Chen D, Dong L, Bian Y, Fan J (2015) Prediction and identification of rotary axes error of non-orthogonal five-axis machine tool. Int J Mach Tools Manuf 94:74–87

    Article  Google Scholar 

  3. Wei C, Lai R (2011) Kinematical analyses and transmission efficiency of a preloaded ball screw operating at high rotational speeds. Mech Mach Theory 46:880–898

    Article  MATH  Google Scholar 

  4. Zhang Z, Liu Z, Qiang C, Yin Q, Cai L (2017) An approach of comprehensive error modeling and accuracy allocation for the improvement of reliability and optimization of cost of a multi-axis NC machine tool. Int J Adv Manuf Technol 89:561–579

    Article  Google Scholar 

  5. Zhang Z, Cai L, Cheng Q, Liu Z, Gu P (2019) A geometric error budget method to improve machining accuracy reliability of multi-axis machine tools. J Intell Manuf 30:495–519

    Article  Google Scholar 

  6. Jing T, Tian X, Liu X, Hu H, Li B (2020) A multiple alternative processes-based cost-tolerance optimal model for aircraft assembly. Int J Adv Manuf Technol 107:667–677

    Article  Google Scholar 

  7. Wu H, Zheng H, Hu T, Wang W, Meng X (2020) A geometric accuracy analysis and tolerance robust design approach for a vertical machining center based on the reliability theory. Measurement 161:107809

    Article  Google Scholar 

  8. Fan J, Tao H, Pan R, Chen D (2020) Optimal tolerance allocation for five-axis machine tools in consideration of deformation caused by gravity. Int J Adv Manuf Technol 111:13–24

    Article  Google Scholar 

  9. Yang J, Mayer JRR, Altintas Y (2015) A position independent geometric errors identification and correction method for five-axis serial machines based on screw theory. Int J Mach Tools Manuf 95:52–66

    Article  Google Scholar 

  10. Wu C, Fan J, Wang Q, Pan R, Tang Y, Li Z (2018) Prediction and compensation of geometric error for translational axes in multi-axis machine tools. Int J Adv Manuf Technol 95:3413–3435

    Article  Google Scholar 

  11. Wu B, Yin Y, Zhang Y, Luo M (2019) A new approach to geometric error modeling and compensation for a three-axis machine tool. Int J Adv Manuf Technol 102:1249–1256

    Article  Google Scholar 

  12. Tao H, Chen R, Xuan J, Xia Q, Yang Z, Zhang X, He S, Shi T (2020) Prioritization analysis and compensation of geometric errors for ultra-precision lathe based on the random forest methodology. Precis Eng 61:23–40

    Article  Google Scholar 

  13. Liu Y, Fei D, Li D, Wu Y, Bo W (2020) Machining accuracy improvement for a dual-spindle ultra-precision drum roll lathe based on geometric error analysis and calibration. Precis Eng 66:401–416

    Article  Google Scholar 

  14. Niu P, Cheng Q, Liu Z, Chu H (2021) A machining accuracy improvement approach for a horizontal machining center based on analysis of geometric error characteristics. Int J Adv Manuf Technol 112:2873–2887

    Article  Google Scholar 

  15. Wu H, Zheng H, Wang W, Xiang X, Rong M (2020) A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis. The International Journal of Advanced Manufacturing Technology 106:3943–3956

    Article  Google Scholar 

  16. Luo X, Xie F, Liu X, Li J (2018) Error modeling and sensitivity analysis of a novel 5-degree-of-freedom parallel kinematic machine tool. Proc IMechE Part B: J Eng Manuf 6(233):1–16

    Google Scholar 

  17. Yang S, Lee K (2021) Identification of 11 position-independent geometric errors of a five-axis machine tool using 3D geometric sensitivity analysis. Int J Adv Manuf Technol 113:3271–3282

    Article  Google Scholar 

  18. Wang C, Ding P, Huang X, Gao T, Li C, Zhang C (2021) Reliability sensitivity analysis of ball-end milling accuracy. Int J Adv Manuf Technol 112:2051–2064

    Article  Google Scholar 

  19. Cheng Q, Feng Q, Liu Z, Gu P, Zhang G (2016) Sensitivity analysis of machining accuracy of multi-axis machine tool based on POE screw theory and Morris method. Int J Adv Manuf Technol 84:2301–2318

    Article  Google Scholar 

  20. Fang W, Tian X (2021) Geometric error sensitivity analysis for a 6-axis welding equipment based on Lie theory. Int J Adv Manuf Technol 113:1045–1056

    Article  Google Scholar 

  21. Zhang S, He C, Liu X, Xu J, Sun Y (2020) Kinematic chain optimization design based on deformation sensitivity analysis of a five-axis machine tool. Int J Precis Eng Manuf 21:2375–2389

    Article  Google Scholar 

  22. Chen G, Liang Y, Sun Y, Chen W, Wang B (2013) Volumetric error modeling and sensitivity analysis for designing a five-axis ultra-precision machine tool. Int J Adv Manuf Technol 68:2525–2534

    Article  Google Scholar 

  23. Yao H, Li Z, Zhao X, Sun T, Dobrovolskyi G, Li G (2016) Modeling of kinematics errors and alignment method of a swing arm ultra-precision diamond turning machine. Int J Adv Manuf Technol 87:165–176

    Article  Google Scholar 

  24. Guo S, Jiang G, Zhang D, Mei X (2017) Position-independent geometric error identification and global sensitivity analysis for the rotary axes of five-axis machine tools. Meas Sci Technol 28:045006

    Article  Google Scholar 

  25. Tian W, Liu S, Liu X (2017) Accuracy design of high precision machine tools using error sensitivity analysis methodology. Proc IMechE Part C: J Mechanical Engineering Science 18:3401–3413

    Article  Google Scholar 

  26. Guo S, Zhang D, Xi Y (2016) Global quantitative sensitivity analysis and compensation of geometric errors of CNC machine tool. Math Problems Eng 2016:1–12

    Article  Google Scholar 

  27. Wu C, Fan J, Wang Q, Chen D (2018) Machining accuracy improvement of non-orthogonal five-axis machine tools by a new iterative compensation methodology based on the relative motion constraint equation. Int J Mach Tools Manuf 124:80–98

    Article  Google Scholar 

  28. Zhu S, Ding G, Qin S, Lei J, Zhuang L, Yan K (2012) Integrated geometric error modeling, identification and compensation of CNC machine tools. Int J Mach Tools Manuf 52:24–29

    Article  Google Scholar 

  29. Ding S, Huang X, Yu C, Wang W (2016) Actual inverse kinematics for position-independent and position-dependent geometric error compensation of five-axis machine tools. Int J Mach Tools Manuf 111:55–62

    Article  Google Scholar 

  30. Song ZY, Cui YW (2011) S-shape detection test piece and a detection method for detection the precision of the numerical control milling machine. United States, Invention Patent US8061052B2

  31. ISO 230–1 (2012) Test code for machine tools—part 1: geometric accuracy of machines operating under no-load or quasi-static conditions 1–11

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (No. 51775010) and Natural Science Foundation of Anhui Province of China (No. 2108085ME167).

Author information

Authors and Affiliations

Authors

Contributions

Haohao Tao: resources, supervision, methodology, validation, formal analysis, writing—original draft, writing—review and editing. Tongjie Li: project administration, funding acquisition. Feng Chen: conceptualization, investigation. Jinwei Fan: project administration, funding acquisition. Ri Pan: data curation, software.

Corresponding author

Correspondence to Tongjie Li.

Ethics declarations

Ethics approval

According to the Submission guidelines, this section is not applicable because this manuscript is used for non-life science journals.

Consent to participate

According to the Submission guidelines, this section is not applicable because this manuscript is used for non-life science journals.

Consent for publication

All the authors agreed to publish this paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\left\{\begin{array}{l}{\delta }_{x}\left(x\right)=-2.64\times {10}^{-4}+3.02\times {10}^{-3}cos\left(5.78\times {10}^{-4}x\right)-9.76\times {10}^{-3}sin\left(5.78\times {10}^{-4}x\right)\\ \begin{array}{cc}\begin{array}{cc}& \end{array}& -2.95\times {10}^{-3}\mathrm{cos}\left(2x\times 5.78\times {10}^{-4}\right)+5.1\times {10}^{-3}\mathrm{sin}\left(2x\times 5.78\times {10}^{-4}\right)\end{array}\\ {\delta }_{y}\left(x\right)=2.17-1.041cos\left(5.28\times {10}^{-4}x\right)-3.561sin\left(5.28\times {10}^{-4}x\right)\\ \begin{array}{ccc}& & -1.912\mathrm{cos}\left(2x\times 5.28\times {10}^{-4}\right)+1.231\mathrm{sin}\left(2x\times 5.28\times {10}^{-4}\right)+0.7221\mathrm{cos}\left(3x\times 5.28\times {10}^{-4}\right)\end{array}\\ \begin{array}{ccc}& & +0.5917\mathrm{sin}\left(3x\times 5.28\times {10}^{-4}\right)+0.07389\mathrm{cos}\left(4x\times 5.28\times {10}^{-4}\right)-0.1703\mathrm{sin}\left(4x\times 5.28\times {10}^{-4}\right)\end{array}\\ {\delta }_{z}\left(x\right)=-2.14\times {10}^{-4}-1.16\times {10}^{-2}cos\left(1.27\times {10}^{-3}x\right)-7.83\times {10}^{-4}sin\left(1.27\times {10}^{-3}x\right)\\ \begin{array}{ccc}& & +2.97\times {10}^{-3}\mathrm{cos}\left(2x\times 1.27\times {10}^{-3}\right)-1.96\times {10}^{-3}\mathrm{sin}\left(2x\times 1.27\times {10}^{-3}\right)\end{array}\\ \begin{array}{ccc}& & +5.74\times {10}^{-3}\mathrm{cos}\left(3x\times 1.27\times {10}^{-3}\right)-4.6\times {10}^{-3}\mathrm{sin}\left(3x\times 1.27\times {10}^{-3}\right)\end{array}\\ {\varepsilon }_{x}\left(x\right)=-10.23+4.89cos\left(1.03\times {10}^{-3}x\right)+4.92sin\left(1.03\times {10}^{-3}x\right)+0.99cos\left(2x\times 1.03\times {10}^{-3}\right)\\ \begin{array}{ccc}& & +0.28\mathrm{sin}\left(2x\times 1.03\times {10}^{-3}\right)+2.2\mathrm{cos}\left(3x\times 1.03\times {10}^{-3}\right)-0.81\mathrm{sin}\left(3x\times 1.03\times {10}^{-3}\right)\end{array}\\ {\varepsilon }_{y}\left(x\right)=-1.29-1.1cos\left(1.05\times {10}^{-3}x\right)-1.07sin\left(1.05\times {10}^{-3}x\right)\\ \begin{array}{ccc}& & +0.05\mathrm{cos}\left(2x\times 1.05\times {10}^{-3}\right)+2.65\mathrm{sin}\left(2x\times 1.05\times {10}^{-3}\right)+1.97\mathrm{cos}\left(3x\times 1.05\times {10}^{-3}\right)\end{array}\\ \begin{array}{ccc}& & +3.68\mathrm{sin}\left(3x\times 1.05\times {10}^{-3}\right)-2.87\mathrm{cos}\left(4x\times 1.05\times {10}^{-3}\right)+0.52\mathrm{sin}\left(4x\times 1.05\times {10}^{-3}\right)\end{array}\\ {\varepsilon }_{z}\left(x\right)=-10.69+4.45cos\left(1.08\times {10}^{-3}x\right)+13.98sin\left(1.08\times {10}^{-3}x\right)\\ \begin{array}{ccc}& & +0.17\mathrm{cos}\left(2x\times 1.08\times {10}^{-3}\right)+4.54\mathrm{sin}\left(2x\times 1.08\times {10}^{-3}\right)+7.36\mathrm{cos}\left(3x\times 1.08\times {10}^{-3}\right)\end{array}\\ \begin{array}{ccc}& & +2.86\mathrm{sin}\left(3x\times 1.08\times {10}^{-3}\right)-3.01\mathrm{cos}\left(4x\times 1.08\times {10}^{-3}\right)+4.67\mathrm{sin}\left(4x\times 1.08\times {10}^{-3}\right)\end{array}\end{array}\right.\begin{array}{ccc}\begin{array}{cc}\begin{array}{cc}& \end{array}& \end{array}& & \end{array}$$
(15)

Appendix 2

Please see Tables

Table 6 Ideal and actual static homogeneous transformation matrices for the adjacent bodies

6,

Table 7 Ideal and actual motion homogeneous transformation matrices for the adjacent bodies

7 and

Table 8 Position vector of the body reference coordinate system origin of each body

8.

Appendix 3

$$\left\{\begin{array}{l}\begin{array}{l}e_x=\left(\delta_x\left(x\right)+\right.\delta_x\left(y\right)-l_kcos\left(b\right)\left(\varepsilon_y\left(x\right)+\varepsilon_y\left(y\right)+\varepsilon_y\left(z\right)+\varepsilon_{xc}+\varepsilon_{xz}\right)+h_{4z}\left(\varepsilon_y\left(x\right)+\varepsilon_y\left(y\right)\right)\\\;\;\;\;-\left(\varepsilon_y\left(b\right)+\delta_y\left(c\right)\right)sin\left(c\right)-\varepsilon_z\left(x\right)h_{3y}-h_{4y}\left(\varepsilon_z\left(x\right)+\varepsilon_z\left(y\right)+\varepsilon_{xy}\right)+\varepsilon_{xz}z+\delta_x\left(c\right)cos\left(c\right)\\\;\;\;\;+h_{5z}\left(\varepsilon_y\left(x\right)+\varepsilon_y\left(y\right)+\varepsilon_y\left(z\right)+\varepsilon_{xz}\right)+h_{6z}\left(\begin{array}{l}\varepsilon_y\left(x\right)+\varepsilon_y\left(y\right)+\varepsilon_y\left(z\right)+\varepsilon_{xc}+\varepsilon_{xz}\\+\varepsilon_y\left(c\right)cos\left(c\right)+\varepsilon_x\left(c\right)sin\left(c\right)\end{array}\right)+\varepsilon_y\left(x\right)z\\\;\;\;\;-h_{5y}(\varepsilon_z\left(x\right)+\varepsilon_z\left(y\right)+\varepsilon_z\left(z\right)+\varepsilon_{xy})-l_kcos\left(b\right)cos\left(c\right)\left(\varepsilon_y\left(b\right)+\varepsilon_y\left(c\right)+\varepsilon_x\left(c\right)\right)-\varepsilon_{xy}y\\\;\;\;\;+\delta_x\left(b\right)cos\left(b\right)cos\left(c\right)+\left(\delta_z\left(b\right)-l_k\right)cos\left(c\right)sin\left(b\right)-\varepsilon_z\left(x\right)y-\varepsilon_{bz}l_kcos\left(b\right)sin\left(c\right)+\varepsilon_y\left(y\right)z\\\;\;\;\;-\left(\varepsilon_z\left(c\right)+\varepsilon_z\left(x\right)+\varepsilon_z\left(y\right)+\varepsilon_z\left(z\right)+\varepsilon_{xy}\right)\left(h_{6y}cos\left(c\right)+h_{6x}sin\left(c\right)\right)+\varepsilon_y\left(x\right)h_{3z}+\delta_x\left(z\right)\\\;\;\;\;-\varepsilon_x\left(b\right)l_ksin\left(c\right)+\left(\varepsilon_z\left(c\right)+\varepsilon_z\left(x\right)+\varepsilon_z\left(y\right)+\varepsilon_z\left(z\right)+\varepsilon_{xb}+\varepsilon_{xy}\right)l_ksin\left(b\right)\left.sin\left(c\right)\right)dn_{sjkx}\end{array}\\\begin{array}{l}e_y=\left(\delta_y\left(x\right)\right.+\delta_y\left(y\right)+\delta_y\left(z\right)+h_{5x}\left(\varepsilon_z\left(x\right)+\varepsilon_z\left(y\right)+\varepsilon_{xy}+\varepsilon_z\left(z\right)\right)+h_{4x}\left(\varepsilon_z\left(x\right)+\varepsilon_z\left(y\right)+\varepsilon_{xy}\right)\\\;\;\;\;\;+\delta_z\left(b\right)sin\left(b\right)sin\left(c\right)+\varepsilon_z\left(x\right)h_{3x}-\varepsilon_{yz}z+h_{6x}cos\left(c\right)\left(\varepsilon_z\left(c\right)+\varepsilon_z\left(x\right)+\varepsilon_z\left(y\right)+\varepsilon_z\left(z\right)+\varepsilon_{xy}\right)\\\;\;\;\;\;-h_{5z}\left(\varepsilon_x\left(x\right)+\varepsilon_x\left(y\right)+\varepsilon_x\left(z\right)+\varepsilon_{yz}\right)-\varepsilon_x\left(x\right)z-\varepsilon_x\left(y\right)z+\left(\varepsilon_{bz}-\varepsilon_x\left(c\right)\right)l_kcos\left(b\right)cos\left(c\right)\\\;\;\;\;\;-h_{6z}\left(\varepsilon_x\left(x\right)+\varepsilon_x\left(y\right)+\varepsilon_x\left(z\right)+\varepsilon_{yc}+\varepsilon_{yz}+\varepsilon_x\left(c\right)cos\left(c\right)-\varepsilon_y\left(c\right)sin\left(c\right)\right)+\delta_y\left(b\right)cos\left(c\right)\\\;\;\;\;\;-l_kcos\left(b\right)\left(\varepsilon_x\left(x\right)+\varepsilon_x\left(y\right)+\varepsilon_x\left(z\right)+\varepsilon_{yc}+\varepsilon_{yz}\right)+cos\left(b\right)sin\left(c\right)\left(\delta_x\left(b\right)+\varepsilon_y\left(c\right)-\varepsilon_y\left(b\right)\right)\\\;\;\;\;\;-h_{6y}sin\left(c\right)\left(\varepsilon_z\left(c\right)+\varepsilon_z\left(x\right)+\varepsilon_z\left(y\right)+\varepsilon_z\left(z\right)+\varepsilon_{xy}\right)-h_{4z}\left(\varepsilon_x\left(x\right)+\varepsilon_x\left(y\right)\right)+l_k\varepsilon_x\left(b\right)cos\left(c\right)\\\;\;\;\;\;\;+\delta_y\left(c\right)cos\left(c\right)+\delta_x\left(c\right)sin\left(c\right)-l_kcos\left(c\right)sin\left(b\right)\left(\varepsilon_z\left(c\right)+\varepsilon_z\left(x\right)+\varepsilon_z\left(y\right)+\varepsilon_z\left(z\right)+\varepsilon_{xb}+\varepsilon_{xy}\right)\\\left.\;\;\;\;\;-\varepsilon_x\left(x\right)h_{3z}\right)dn_{sjky}\end{array}\\\begin{array}{l}e_z=\left(\delta_z\left(c\right)\right.+\varepsilon_x\left(x\right)y-\varepsilon_y\left(x\right)h_{3x}+l_kcos\left(c\right)sin\left(b\right)\left(\varepsilon_y\left(x\right)+\varepsilon_y\left(y\right)+\varepsilon_y\left(z\right)+\varepsilon_{xc}+\varepsilon_{xz}\right)\\\;\;\;\;+sin\left(b\right)\begin{pmatrix}\left(\varepsilon_y\left(b\right)l_k+\varepsilon_y\left(c\right)l_k-\delta_x\left(b\right)\right)-l_ksin\left(c\right)\\\left(\varepsilon_x\left(x\right)+\varepsilon_x\left(y\right)+\varepsilon_x\left(z\right)+\varepsilon_{yc}+\varepsilon_{yz}\right)\end{pmatrix}-h_{5x}\left(\varepsilon_y\left(x\right)+\varepsilon_y\left(y\right)+\varepsilon_y\left(z\right)+\varepsilon_{xz}\right)\\\;\;\;\;+h_{6y}\left(\varepsilon_x\left(c\right)+\varepsilon_{yc}\cos\left(c\right)+\sin\left(c\right)\left(\varepsilon_y\left(x\right)+\varepsilon_y\left(y\right)+\varepsilon_y\left(z\right)+\varepsilon_{xc}+\varepsilon_{xz}\right)\right)-h_{4x}\left(\varepsilon_y\left(x\right)+\varepsilon_y\left(y\right)\right)\\\;\;\;\;+h_{5y}\left(\varepsilon_{yz}+\varepsilon_x\left(y\right)+\varepsilon_x\left(z\right)+\varepsilon_x\left(x\right)\right)+\delta_z\left(x\right)+\delta_z\left(y\right)+\delta_z\left(z\right)+h_{4y}\left(\varepsilon_x\left(x\right)+\varepsilon_x\left(y\right)\right)\\\;\;\;\;\;+h_{6x}\begin{pmatrix}sin\left(c\right)\left(\varepsilon_x\left(x\right)+\varepsilon_x\left(y\right)+\varepsilon_x\left(z\right)+\varepsilon_{yc}+\varepsilon_{yz}\right)-cos\left(c\right)\\\left(\varepsilon_y\left(y\right)+\varepsilon_y\left(z\right)+\varepsilon_{xc}+\varepsilon_{xz}+\varepsilon_y\left(x\right)\right)-\varepsilon_y\left(c\right)\end{pmatrix}+\varepsilon_x\left(b\right)\varepsilon_y\left(z\right)\varepsilon_{xb}l_kcos\left(c\right)\\\left.\;\;\;\;+\delta_z\left(b\right)cos\left(b\right)+\varepsilon_x\left(x\right)h_{3y}\right)dn_{sjkz}\end{array}\end{array}\right.$$
(16)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, H., Fan, J., Li, T. et al. An approach to enhancing machining accuracy of five-axis machine tools based on a new sensitivity analysis method. Int J Adv Manuf Technol 124, 2383–2400 (2023). https://doi.org/10.1007/s00170-022-10365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10365-2

Keywords

Navigation