Skip to main content

Advertisement

Log in

Potentials and challenges of additive manufacturing techniques in the fabrication of polymer composites

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

As a promising technology capable of transforming the conventional manufacturing techniques, the use of additive manufacturing (AM) has span beyond the prototyping it was initially known for, and its use is currently revolutionising the future of the manufacturing and research world. A review of some of the advances made in the additive manufacturing of polymers and their composites is presented in this paper. Some of the advantages and disadvantages of the different AM techniques used in polymer composites (PC) fabrications are presented, and the different areas of applications of the AM fabricated PC are highlighted. Also highlighted are some of the potentials and challenges associated with the fabrication of components using 4D printing. Finally, the paper presents the prospects and the endless opportunities that abound with the AM of polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Saleh Alghamdi S, John S, Roy Choudhury N, Dutta NK (2021) Additive manufacturing of polymer materials: Progress, promise and challenges. Polymers 13(5):753

    Article  Google Scholar 

  2. Salifu S, Desai D, Ogunbiyi O, Mwale K (2022) Recent development in the additive manufacturing of polymer-based composites for automotive structures—a review. Int J Adv Manuf Technol 1–15

    Article  Google Scholar 

  3. Jiang J, Xu X, Stringer J (2018) Support structures for additive manufacturing: a review. J Manuf Mater Process 2(4):64

    Google Scholar 

  4. Jiang J, Ma Y (2020) Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: a review. Micromachines 11(7):633

    Article  Google Scholar 

  5. Jiang J (2020) A novel fabrication strategy for additive manufacturing processes. J Clean Prod 272:122916

    Article  Google Scholar 

  6. Zhakeyev A, Wang P, Zhang L, Shu W, Wang H, Xuan J (2017) Additive manufacturing: unlocking the evolution of energy materials. Adv Sci 4(10):1700187

    Article  Google Scholar 

  7. Chiulan I, Frone AN, Brandabur C, Panaitescu DM (2018) Recent advances in 3D printing of aliphatic polyesters. Bioengineering 5(1):2

    Article  Google Scholar 

  8. Shahrubudin N, Lee TC, Ramlan R (2019) An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf 35:1286–1296

    Article  Google Scholar 

  9. Kumar LJ, Pandey PM, Wimpenny DI (2019) 3D printing and additive manufacturing technologies. Springer

  10. Gibson I, Rosen DW, Stucker B, Khorasani M (2021) Additive manufacturing technologies. Springer

  11. Meboldt M, Klahn C (2017) Industrializing additive manufacturing-proceedings of additive manufacturing in products and applications-AMPA2017. Springer

  12. Wimpenny DI, Pandey PM, Kumar LJ (2017) Advances in 3D printing & additive manufacturing technologies. Springer

  13. Chua CK, Leong KF (2014) 3D Printing and additive manufacturing: Principles and applications (with companion media pack)-of rapid prototyping. World Scientific Publishing Company

  14. Chua CK, Vadakke Matham M, Kim Y-J (2017) Lasers in 3D printing and manufacturing. World Sci

  15. Kumar S (2020) Additive manufacturing processes. Springer

  16. Shen X, Naguib HE (2019) A robust ink deposition system for binder jetting and material jetting. Addit Manuf 29:100820

    Google Scholar 

  17. Dilag J, Chen T, Li S, Bateman SA (2019) Design and direct additive manufacturing of three-dimensional surface micro-structures using material jetting technologies. Addit Manuf 27:167–174

    Google Scholar 

  18. Dassault-Systemes (2021) Introduction to 3D printing - additive processes. Available: https://make.3dexperience.3ds.com/processes/material-jetting

  19. Engineering-Product-Design (2021) Powder bed fusion. Available: https://engineeringproductdesign.com/knowledge-base/powder-bed-fusion/

  20. Leary M (2019) Design for additive manufacturing. Elsevier

  21. Mirzababaei S, Pasebani S (2019) A review on binder jet additive manufacturing of 316L stainless steel. Journal of Manufacturing and Materials Processing 3(3):82

    Article  Google Scholar 

  22. Lores A, Azurmendi N, Agote I, Zuza E (2019) A review on recent developments in binder jetting metal additive manufacturing: materials and process characteristics. Powder Metall 62(5):267–296

    Article  Google Scholar 

  23. Zhang Y, Jarosinski W, Jung Y-G, Zhang J (2018) Additive manufacturing processes and equipment. Addit Manuf Elsevier, pp. 39–51

  24. Li M, Du W, Elwany A, Pei Z, Ma C (2020) Metal binder jetting additive manufacturing: a literature review. J Manuf Sci Eng 142(9):090801

    Article  Google Scholar 

  25. Ng WL et al (2020) Vat polymerization-based bioprinting—process, materials, applications and regulatory challenges. Biofabrication 12(2):022001

    Article  Google Scholar 

  26. Garcia EA, Ayranci C, Qureshi AJ (2020) Material property-manufacturing process optimization for form 2 vat-photo polymerization 3D Printers. J Manuf Mater Process 4(1):12

    Google Scholar 

  27. Medellin A, Du W, Miao G, Zou J, Pei Z, Ma C (2019) Vat photopolymerization 3d printing of nanocomposites: a literature review. J Micro Nano-Manuf 7(3):031006

    Article  Google Scholar 

  28. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290

    Article  Google Scholar 

  29. Liu X, Zou B, Xing H, Huang C (2020) The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing. Ceram Int 46(1):937–944

    Article  Google Scholar 

  30. Karakurt I, Aydoğdu A, Çıkrıkcı S, Orozco J, Lin L (2020) Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study. Int J Pharm 584:119428

    Article  Google Scholar 

  31. Phillips BT et al (2020) Additive manufacturing aboard a moving vessel at sea using passively stabilized stereolithography (SLA) 3D printing. Addit Manuf 31:100969

    Google Scholar 

  32. Zhang J, Hu Q, Wang S, Tao J, Gou M (2020) Digital light processing based three-dimensional printing for medical applications. Int J Bioprinting 6(1)

    Google Scholar 

  33. Komissarenko DA et al (2021) DLP 3D printing of scandia-stabilized zirconia ceramics. J Eur Ceram Soc 41(1):684–690

    Article  Google Scholar 

  34. Shen Y et al (2020) DLP printing photocurable chitosan to build bio-constructs for tissue engineering. Carbohyd Polym 235:115970

    Article  Google Scholar 

  35. Saed AB, Behravesh AH, Hasannia S, Akhoundi B, Hedayati SK, Gashtasbi F (2020) An in vitro study on the key features of Poly L-lactic acid/biphasic calcium phosphate scaffolds fabricated via DLP 3D printing for bone grafting. Eur Polymer J 141:110057

    Article  Google Scholar 

  36. Chen F et al (2020) Preparation and biological evaluation of ZrO2 all-ceramic teeth by DLP technology. Ceram Int 46(8):11268–11274

    Article  Google Scholar 

  37. Saed AB, Behravesh AH, Hasannia S, Ardebili SAA, Akhoundi B, Pourghayoumi M (2020) Functionalized poly l-lactic acid synthesis and optimization of process parameters for 3D printing of porous scaffolds via digital light processing (DLP) method. J Manuf Process 56:550–561

    Article  Google Scholar 

  38. Wang L, Kodzius R, Yi X, Li S, Hui YS, Wen W (2012) Prototyping chips in minutes: Direct Laser Plotting (DLP) of functional microfluidic structures. Sens Actuators, B Chem 168:214–222

    Article  Google Scholar 

  39. Zocca A, Gomes CM, Mühler T, Günster J (2014) Powder-bed stabilization for powder-based additive manufacturing. Adv Mech Eng 6:491581

    Article  Google Scholar 

  40. Roy NK, Behera D, Dibua OG, Foong CS, Cullinan MA (2019) A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Microsyst Nanoeng 5(1):1–14

    Article  Google Scholar 

  41. Sutton AT, Kriewall CS, Leu MC Newkirk JW (2017) Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys Prototyp 12(1):3–29

  42. Gonzalez-Gutierrez J, Cano S, Schuschnigg S, Kukla C, Sapkota J, Holzer C (2018) Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives. Materials 11(5):840

    Article  Google Scholar 

  43. Placone JK, Engler AJ (2018) Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthcare Mater 7(8):1701161

    Article  Google Scholar 

  44. Luo C, Wang X, Migler KB, Seppala JE (2020) Upper bound of feed rates in thermoplastic material extrusion additive manufacturing. Addit Manuf 32:101019

    Google Scholar 

  45. Sinha SK (2020) Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing. In 3D and 4D printing of polymer nanocomposite materials: Elsevier, pp. 119–160

  46. Penumakala PK, Santo J, Thomas A (2020) A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos Part B Eng 108336

  47. Daminabo SC, Goel S, Grammatikos SA, Nezhad HY, Thakur VK (2020) Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater Today Chem 16:100248

    Article  Google Scholar 

  48. Liu Y, Chou TW (2020) Additive manufacturing of multidirectional preforms and composites: from three-dimensional to four-dimensional. Mater Today Adv 5:100045

    Article  Google Scholar 

  49. Lamichhane TN, Sethuraman L, Dalagan A, Wang H, Keller J, Paranthaman MP (2020) Additive manufacturing of soft magnets for electrical machines—A review. Mater Today Phys 100255

  50. Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT (2020) 3D printed microfluidics. Annu Rev Anal Chem 13:45–65

    Article  Google Scholar 

  51. Limongi T, Susa F, Allione M, Di Fabrizio E (2020) Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds. Pharmaceutics 12(9):851

    Article  Google Scholar 

  52. Melocchi A et al (2020) 3D printing by fused deposition modeling of single-and multi-compartment hollow systems for oral delivery–A review. Int J Pharm 579:119155

    Article  Google Scholar 

  53. Reddy RDP, Sharma V (2020) Additive manufacturing in drug delivery applications: A review. Int J Pharm 589:119820

    Article  Google Scholar 

  54. Pereira GG, Figueiredo S, Fernandes AI, Pinto JF (2020) Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics 12(9):795

    Article  Google Scholar 

  55. Devi MG, Amutheesan M, Govindhan R, Karthikeyan B (2018) A review of three-dimensional printing for biomedical and tissue engineering applications. Open Biotechnol J 12(1)

    Article  Google Scholar 

  56. Maurel A et al (2020) Overview on lithium-ion battery 3D-Printing By means of material extrusion. ECS Trans 98(13):3

    Article  Google Scholar 

  57. Luong DX et al (2018) Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv Mater 30(28):1707416

    Article  Google Scholar 

  58. Shu X, Wang R (2017) Thermal residual solutions of beams, plates and shells due to laminated object manufacturing with gradient cooling. Compos Struct 174:366–374

    Article  Google Scholar 

  59. Liu S, Ye F, Liu L, Liu Q (2015) Feasibility of preparing of silicon nitride ceramics components by aqueous tape casting in combination with laminated object manufacturing. Mater Des 1980–2015(66):331–335

    Google Scholar 

  60. Krinitcyn M et al (2017) Laminated Object Manufacturing of in-situ synthesized MAX-phase composites. Ceram Int 43(12):9241–9245

    Article  Google Scholar 

  61. Zhang G et al (2018) Frozen slurry-based laminated object manufacturing to fabricate porous ceramic with oriented lamellar structure. J Eur Ceram Soc 38(11):4014–4019

    Article  Google Scholar 

  62. Hung W-S et al (2014) Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon 68:670–677

    Article  Google Scholar 

  63. Park J, Kang MK, Hahn HT (2001) Composite material based laminated object manufacturing (LOM) process Simulation. Adv Compos Lett 10(5):096369350101000504

    Article  Google Scholar 

  64. Derazkola HA, Khodabakhshi F, Simchi A (2020) Evaluation of a polymer-steel laminated sheet composite structure produced by friction stir additive manufacturing (FSAM) technology. Polym Test 90:106690

    Article  Google Scholar 

  65. Bhatt PM, Kabir AM, Peralta M, Bruck HA, Gupta SK (2019) A robotic cell for performing sheet lamination-based additive manufacturing. Addit Manuf 27:278–289

    Google Scholar 

  66. Mueller B (2012) Additive manufacturing technologies–Rapid prototyping to direct digital manufacturing. Assem Autom

  67. Jasiuk I, Abueidda DW, Kozuch C, Pang S, Su FY, McKittrick J (2018) An overview on additive manufacturing of polymers. Jom 70(3):275–283

    Article  Google Scholar 

  68. Schmid M, Wegener K (2016) Additive manufacturing: polymers applicable for laser sintering (LS). Procedia Eng 149:457–464

    Article  Google Scholar 

  69. Muzaffar A, Ahamed MB, Deshmukh K, Faisal M, Pasha SKK (2018) Enhanced electromagnetic absorption in NiO and BaTiO3 based polyvinylidenefluoride nanocomposites. Mater Lett 218:217–220

    Article  Google Scholar 

  70. Deshmukh K, Muzaffar A, Kovářík T, Křenek T, Ahamed MB, Pasha SKK (2020) Fundamentals and applications of 3D and 4D printing of polymers: Challenges in polymer processing and prospects of future research. In 3D and 4D Printing of Polymer Nanocomposite Materials: Elsevier, pp. 527–560

  71. Gladman AS, Garcia-Leiner M, Sauer-Budge AF (2019) Emerging polymeric materials in additive manufacturing for use in biomedical applications. AIMS Bioeng 6(1):1–20

    Article  Google Scholar 

  72. Gkartzou E, Koumoulos EP, Charitidis CA (2017) Production and 3D printing processing of bio-based thermoplastic filament. Manuf Rev 4:1

    Google Scholar 

  73. Childs THC, Berzins M, Ryder GR, Tontowi A (1999) Selective laser sintering of an amorphous polymer—simulations and experiments. Proc Inst Mech Eng Part B J Eng Manuf 213(4):333–349

    Article  Google Scholar 

  74. Lee K-W, Wang S, Lu L, Jabbari E, Currier BL, Yaszemski MJ (2006) Fabrication and characterization of poly (propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding. Tissue Eng 12(10):2801–2811

    Article  Google Scholar 

  75. Matellan C, Armando E (2018) Cost-effective rapid prototyping and assembly of poly (methyl methacrylate) microfluidic devices. Sci Rep 8(1):1–13

    Article  Google Scholar 

  76. Dahlberg T et al (2018) 3D printed water-soluble scaffolds for rapid production of PDMS micro-fluidic flow chambers. Sci Rep 8(1):1–10

    Article  MathSciNet  Google Scholar 

  77. Liao W, Xu L, Wangrao K, Du Y, Xiong Q, Yao Y (2019) Three-dimensional printing with biomaterials in craniofacial and dental tissue engineering. PeerJ 7:e7271

    Article  Google Scholar 

  78. Valtonen O et al (2020) Three-Dimensional printing of the nasal cavities for clinical experiments. Sci Rep 10(1):1–7

    Article  Google Scholar 

  79. Regassa Y, Lemu HG, Sirabizuh B (2019) Trends of using polymer composite materials in additive manufacturing. 659:012021: IOP Publishing

  80. El Moumen A, Tarfaoui M, Lafdi K (2019) Additive manufacturing of polymer composites: Processing and modeling approaches. Compos B Eng 171:166–182

    Article  Google Scholar 

  81. Sánchez DM, de la Mata M, Delgado FJ, Casal V, Molina SI (2020) Development of carbon fiber acrylonitrile styrene acrylate composite for large format additive manufacturing. Mater Des 191:108577

    Article  Google Scholar 

  82. Sathishkumar TP, Satheeshkumar S, Naveen J (2014) Glass fiber-reinforced polymer composites–a review. J Reinf Plast Compos 33(13):1258–1275

    Article  Google Scholar 

  83. Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776

    Article  Google Scholar 

  84. Liu Z et al (2015) Modification of glass fiber surface and glass fiber reinforced polymer composites challenges and opportunities: from organic chemistry perspective. Curr Org Chem 19(11):991–1010

    Article  Google Scholar 

  85. Fernandes EM, Mano JF, Reis RL (2013) Hybrid cork–polymer composites containing sisal fibre: Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Compos Struct 105:153–162

    Article  Google Scholar 

  86. Türk D-A, Kussmaul R, Zogg M, Klahn C, Leutenecker-Twelsiek B, Meboldt M (2017) Composites part production with additive manufacturing technologies. Procedia CIRP 66:306–311

    Article  Google Scholar 

  87. Bruyas A, Geiskopf F, Renaud P (2015) Toward unibody robotic structures with integrated functions using multimaterial additive manufacturing: Case study of an MRI-compatible interventional device. 1744–1750:IEEE

  88. Bahr R, He X, Tehrani B, Tentzeris MM (2018) A fully 3d printed multi-chip module with an on-package enhanced dielectric lens for mm-wave applications using multimaterial stereo-lithography. 1561–1564:IEEE

  89. Chen K-W, Tsai M-J (2019) Multi-nozzle pneumatic extrusion based additive manufacturing system for fabricating a sandwich structure with soft and hard material. 1–6:IEEE

  90. Wang K et al (2020) 3D printing of viscoelastic suspensions via digital light synthesis for tough nanoparticle–elastomer composites. Adv Mater 32(25):2001646

    Article  Google Scholar 

  91. Yuan S, Shen F, Chua CK, Zhou K (2019) Polymeric composites for powder-based additive manufacturing: Materials and applications. Prog Polym Sci 91:141–168

    Article  Google Scholar 

  92. Ahmed S, Jones FR (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci 25(12):4933–4942

    Article  Google Scholar 

  93. Korhonen H et al (2016) Fabrication of graphene‐based 3D structures by stereolithography. Phys Status Solidi (a) 213(4):982–985

    Article  Google Scholar 

  94. Rupp H, Döhler D, Hilgeroth P, Mahmood N, Beiner M, Binder WH (2019) 3D printing of supramolecular polymers: Impact of nanoparticles and phase separation on printability. Macromol Rapid Commun 40(24):1900467

    Article  Google Scholar 

  95. Abedini A, Chen ZT (2014) A micromechanical model of particle-reinforced metal matrix composites considering particle size and damage. Comput Mater Sci 85:200–205

    Article  Google Scholar 

  96. Yuan S, Shen F, Bai J, Chua CK, Wei J, Zhou K (2017) 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. Mater Des 120:317–327

    Article  Google Scholar 

  97. Yuan S, Bai J, Chua CK, Wei J, Zhou K (2016) Material evaluation and process optimization of CNT-coated polymer powders for selective laser sintering. Polymers 8(10):370

    Article  Google Scholar 

  98. Palanikumar K, Mudhukrishnan M (2020) Technologies in additive manufacturing for fiber reinforced composite materials: a review. Curr Opin Chem Eng 28:51–59

    Article  Google Scholar 

  99. Van de Werken N, Tekinalp H, Khanbolouki P, Ozcan S, Williams A, Tehrani M (2020) Additively manufactured carbon fiber-reinforced composites: State of the art and perspective. Addit Manuf 31:100962

    Google Scholar 

  100. Shi B et al (2020) Dynamic capillary-driven additive manufacturing of continuous carbon fiber composite. Matter 2(6):1594–1604

    Article  Google Scholar 

  101. Nawafleh N, Celik E (2020) Additive manufacturing of short fiber reinforced thermoset composites with unprecedented mechanical performance. Addit Manuf 33:101109

    Google Scholar 

  102. Goh GD, Yap YL, Agarwala S, Yeong WY (2019) Recent progress in additive manufacturing of fiber reinforced polymer composite. Adv Mater Technol 4(1):1800271

    Article  Google Scholar 

  103. Dickson AN, Barry JN, McDonnell KA, Dowling DP (2017) Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf 16:146–152

    Google Scholar 

  104. Li B, Zhang L, Yang B (2020) Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting. Compos Commun 19:56–60

    Article  Google Scholar 

  105. Farahani RD, Dubé M, Therriault D (2016) Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater 28(28):5794–5821

    Article  Google Scholar 

  106. Bustillos J, Montero-Zambrano D, Loganathan A, Boesl B, Agarwal A (2019) Stereolithography-based 3D printed photosensitive polymer/boron nitride nanoplatelets composites. Polym Compos 40(1):379–388

    Article  Google Scholar 

  107. Abshirini M, Charara M, Liu Y, Saha M, Altan MC (2018) 3D printing of highly stretchable strain sensors based on carbon nanotube nanocomposites. Adv Eng Mater 20(10):1800425

    Article  Google Scholar 

  108. Zhang L et al (2020) Fabrication of photothermally responsive nanocomposite hydrogel through 3D printing. Macromol Mater Eng 305(2):1900718

    Article  Google Scholar 

  109. Wang B, Liu J, Chen K, Wang Y, Shao Z (2020) Three-dimensional printing of methacrylic grafted cellulose nanocrystal-reinforced nanocomposites with improved properties. Polym Eng Sci 60(4):782–792

    Article  Google Scholar 

  110. Chizari K, Daoud MA, Ravindran AR, Therriault D (2016) 3D printing of highly conductive nanocomposites for the functional optimization of liquid sensors. Small 12(44):6076–6082

    Article  Google Scholar 

  111. Mehta V, Rath SN (2021) 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Des Manuf 4(2):311–343

    Article  Google Scholar 

  112. Ho CMB et al (2017) 3D printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering. Macromol Biosci 17(4):1600250

    Article  Google Scholar 

  113. Ramírez AS, D'Amato R, Haro FB, Marcos MI, de Agustín del Burgo JM (2018) Composite material created by additive manufacturing techniques FFF and Robocasting for the manufacture of medical parts. 410–415

  114. Jockusch J, Özcan M (2020) Additive manufacturing of dental polymers: An overview on processes, materials and applications. Dent Mater J 2019–123

  115. Auyeung RCY, Kim H, Mathews S, Charipar N, Piqué A (2017) Laser additive manufacturing of embedded electronics. Laser Addit Manuf Elsevier 319–350

    Article  Google Scholar 

  116. Goh GL, Agarwala S, Yeong WY (2019) Directed and on-demand alignment of carbon nanotube: a review toward 3D printing of electronics. Adv Mater Interfaces 6(4):1801318

    Article  Google Scholar 

  117. Tao J et al (2013) Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure. Sci Rep 3(1):1–7

    Article  Google Scholar 

  118. Wang L, Ding T, Wang P (2009) Thin flexible pressure sensor array based on carbon black/silicone rubber nanocomposite. IEEE Sens J 9(9):1130–1135

    Article  Google Scholar 

  119. Tadakaluru S, Thongsuwan W, Singjai P (2014) Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 14(1):868–876

    Article  Google Scholar 

  120. Mirzaee M, Noghanian S, Wiest L, Chang I (2015) Developing flexible 3D printed antenna using conductive ABS materials. 1308–1309:IEEE

  121. Angrish A (2014) A critical analysis of additive manufacturing technologies for aerospace applications. 1–6:IEEE

  122. Ortiz-Acosta D, Moore T (2019) Functional 3D printed polymeric materials. Funct Mater 1–15

    Google Scholar 

  123. Goh GD, Agarwala S, Goh GL, Dikshit V, Sing SL, Yeong WY (2017) Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerosp Sci Technol 63:140–151

    Article  Google Scholar 

  124. Joshi M, Chatterjee U (2016) Polymer nanocomposite: an advanced material for aerospace applications. Adv Compos Mater Aerosp Eng Elsevier 241–264

    Google Scholar 

  125. Njuguna J, Pielichowski K (2003) Polymer nanocomposites for aerospace applications: properties. Adv Eng Mater 5(11):769–778

    Article  Google Scholar 

  126. Kausar A, Rafique I, Muhammad B (2017) Aerospace application of polymer nanocomposite with carbon nanotube, graphite, graphene oxide, and nanoclay. Polym-Plast Technol Eng 56(13):1438–1456

    Article  Google Scholar 

  127. Rana S, Parveen S, Fangueiro R (2016) Multiscale composites for aerospace engineering. Adv Compos Mater Aerosp Eng Elsevier 265–293

    Google Scholar 

  128. Williams G, Trask R, Bond I (2007) A self-healing carbon fibre reinforced polymer for aerospace applications. Compos A Appl Sci Manuf 38(6):1525–1532

    Article  Google Scholar 

  129. Bingham GA, Hague R (2013) Efficient three dimensional modelling of additive manufactured textiles. Rapid Prototyp J

  130. Chatterjee K, Ghosh TK (2020) 3D printing of textiles: potential roadmap to printing with fibers. Adv Mater 32(4):1902086

    Article  Google Scholar 

  131. Bingham GA, Hague RJM, Tuck CJ, Long AC, Crookston JJ, Sherburn MN (2007) Rapid manufactured textiles. Int J Comput Integr Manuf 20(1):96–105

    Article  Google Scholar 

  132. Korger M, Bergschneider J, Lutz M, Mahltig B, Finsterbusch K, Rabe M (2016) Possible applications of 3D printing technology on textile substrates. 141:012011:IOP Publishing

  133. Melnikova R, Ehrmann A, Finsterbusch K (2014) 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. 62:012018:IOP Publishing

  134. Pei E, Shen J, Watling J (2015) Direct 3D printing of polymers onto textiles: experimental studies and applications. Rapid Prototyp J

  135. Johnson A, Bingham GA, Wimpenny DI (2013) Additive manufactured textiles for high‐performance stab resistant applications. Rapid Prototyp J

  136. Leist SK, Gao D, Chiou R, Zhou J (2017) Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles. Virtual Phys Prototyp 12(4):290–300

    Article  Google Scholar 

  137. Maiti S, Das D, Sen K (2017) Flexible non-metallic electro-conductive textiles. Text Prog 49(1):1–52

    Article  Google Scholar 

  138. Kaynak A, Zolfagharian A (2019) Stimuli-responsive polymer systems—recent manufacturing techniques and applications. vol. 12, ed: Multidisciplinary Digital Publishing Institute, p. 238.

  139. Paolini A, Kollmannsberger S, Rank E (2019) Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit Manuf 30:100894

    Google Scholar 

  140. Khare V, Sonkaria S, Lee G-Y, Ahn S-H, Chu W-S (2017) From 3D to 4D printing–design, material and fabrication for multi-functional multi-materials. Int J Precis Eng Manuf-Green Technol 4(3):291–299

    Article  Google Scholar 

  141. Bajpai A, Baigent A, Raghav S, Brádaigh CÓ, Koutsos V, Radacsi N (2020) 4D printing: materials, technologies, and future applications in the biomedical field. Sustainability 12(24):10628

    Article  Google Scholar 

  142. Zhou Y et al (2015) From 3D to 4D printing: approaches and typical applications. J Mech Sci Technol 29(10):4281–4288

    Article  Google Scholar 

  143. Sun L, Huang WM (2010) Thermo/moisture responsive shape-memory polymer for possible surgery/operation inside living cells in future. Mater Des (1980–2015) 31(5):2684–2689

    Article  Google Scholar 

  144. Seffen KA (2007) Hierarchical multi-stable shapes in mechanical memory metal. Scripta Mater 56(5):417–420

    Article  MathSciNet  Google Scholar 

  145. Kim J-S, Lee J-Y, Lee K-T, Kim H-S, Ahn S-H (2013) Fabrication of 3D soft morphing structure using shape memory alloy (SMA) wire/polymer skeleton composite. J Mech Sci Technol 27(10):3123–3129

    Article  Google Scholar 

  146. Manzoor T, Shabbir G, Khalid FA (2012) Analytical technique for the two-dimensional stress wave model of memory alloy dampers. J Mech Sci Technol 26(10):3059–3066

    Article  Google Scholar 

  147. Miao S et al (2017) 4D printing of polymeric materials for tissue and organ regeneration. Mater Today 20(10):577–591

    Article  Google Scholar 

  148. Javaid M, Haleem A (2019) 4D printing applications in medical field: a brief review. Clin Epidemiol Glob Health 7(3):317–321

    Article  Google Scholar 

  149. Momeni F, Liu X, Ni J (2017) A review of 4D printing. Mater Des 122:42–79

    Article  Google Scholar 

  150. Mulakkal MC, Trask RS, Ting VP, Seddon AM (2018) Responsive cellulose-hydrogel composite ink for 4D printing. Mater Des 160:108–118

    Article  Google Scholar 

  151. Athukoralalage SS, Balu R, Dutta NK, Roy Choudhury N (2019) 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: A brief review. Polymers 11(5):898

    Article  Google Scholar 

  152. Dorishetty P, Dutta NK, Choudhury NR (2020) Bioprintable tough hydrogels for tissue engineering applications. Adv Coll Interface Sci 281:102163

    Article  Google Scholar 

  153. Dorishetty P et al (2019) Robust and tunable hybrid hydrogels from photo-cross-linked soy protein isolate and regenerated silk fibroin. ACS Sustain Chem Eng 7(10):9257–9271

    Article  Google Scholar 

  154. Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA (2019) Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Prog Mater Sci 106:100589

    Article  Google Scholar 

  155. Lee AY, An J, Chua CK (2017) Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering 3(5):663–674

    Article  Google Scholar 

  156. Balu R, Dutta NK, Dutta AK, Choudhury NR (2021) Resilin-mimetics as a smart biomaterial platform for biomedical applications. Nat Commun 12(1):1–15

    Article  Google Scholar 

  157. Lee J, Kim H-C, Choi J-W, Lee IH (2017) A review on 3D printed smart devices for 4D printing. Int J Precis Eng Manuf-Green Technol 4(3):373–383

    Article  Google Scholar 

  158. Lou Z, Li L, Wang L, Shen G (2017) Recent progress of self-powered sensing systems for wearable electronics. Small 13(45):1701791

    Article  Google Scholar 

  159. Mitchell A, Lafont U, Hołyńska M, Semprimoschnig C (2018) Additive manufacturing—A review of 4D printing and future applications. Addit Manuf 24:606–626

    Google Scholar 

  160. Morrison RJ et al (2015) Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med 7(285):285ra64-285ra64

    Article  Google Scholar 

  161. Kashyap D, Kumar PK, Kanagaraj S (2018) 4D printed porous radiopaque shape memory polyurethane for endovascular embolization. Addit Manuf 24:687–695

    Google Scholar 

  162. Mahmood MA, Visan AI, Ristoscu C, Mihailescu IN (2020) Artificial neural network algorithms for 3D printing. Materials 14(1):163

    Article  Google Scholar 

  163. Sharma A, Mukhopadhyay T, Rangappa SM, Siengchin S, Kushvaha V (2021) Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design. Arch Comput Methods Eng

  164. Khan A, Shamsi MH, Choi T-S (2009) Correlating dynamical mechanical properties with temperature and clay composition of polymer-clay nanocomposites. Comput Mater Sci 45(2):257–265

    Article  Google Scholar 

  165. Cai R, Wang K, Wen W, Peng Y, Baniassadi M, Ahzi S (2022) Application of machine learning methods on dynamic strength analysis for additive manufactured polypropylene-based composites. Polym Test 110:107580

    Article  Google Scholar 

  166. Kazi M-K, Eljack F, Mahdi E (2020) Predictive ANN models for varying filler content for cotton fiber/PVC composites based on experimental load displacement curves. Compos Struct 254:112885

    Article  Google Scholar 

  167. Rahmanpanah H, Mouloodi S, Burvill C, Gohari S, Davies HMS (2020) Prediction of load-displacement curve in a complex structure using artificial neural networks: A study on a long bone. Int J Eng Sci 154:103319

    Article  MATH  Google Scholar 

  168. Wani I, Sharma A, Kushvaha V, Madhushri P, Peng L (2020) Effect of pH, volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: towards understanding performance of biochar using simplified approach. J Hazard Toxic Radioact Waste 24(4):04020048

    Article  Google Scholar 

  169. Garg A et al (2020) Mechanism of biochar soil pore–gas–water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophys 68(1):207–217

    Article  Google Scholar 

  170. Silver A (2019) Five innovative ways to use 3D printing in the laboratory. Nature 565(7737):123–125

    Article  Google Scholar 

  171. Castelvecchi D (2015) Chemical trick speeds up 3D printing. Nat News

  172. Jones N (2012) Three-dimensional printers are opening up new worlds to research. Nature 487(7405):22–23

    Article  Google Scholar 

  173. Zastrow M (2020) 3D printing gets bigger, faster and stronger. Nature 578(7793):20–24

    Article  Google Scholar 

  174. Yu K, Ritchie A, Mao Y, Dunn ML, Qi HJ (2015) Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials. Procedia Iutam 12:193–203

    Article  Google Scholar 

  175. Castelvecchi D (2019) The ‘replicator’ prints 3D objects from scratch. Nature 566(7742):17–17

    Article  Google Scholar 

  176. Peng M et al (2020) 3D printed mechanically robust graphene/CNT electrodes for highly efficient overall water splitting. Adv Mater 32(23):1908201

    Article  Google Scholar 

  177. Dorishetty P et al (2020) Tunable biomimetic hydrogels from silk fibroin and nanocellulose. ACS Sustain Chem Eng 8(6):2375–2389

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Global Excellence and Stature (GES 4.0) and the Centre for Nanomechanics and Tribocorrosion, University of Johannesburg, South Africa, for their immense support.

Author information

Authors and Affiliations

Authors

Contributions

Smith Salifu: responsible for drafting, conceptualisation and writing. Olugbenga Ogunbiyi: responsible for review and editing. Peter Apata Olubambi: responsible for review and editing.

Corresponding author

Correspondence to Smith Salifu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have read and agreed to publish the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salifu, S., Ogunbiyi, O. & Olubambi, P.A. Potentials and challenges of additive manufacturing techniques in the fabrication of polymer composites. Int J Adv Manuf Technol 122, 577–600 (2022). https://doi.org/10.1007/s00170-022-09976-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09976-6

Keywords

Navigation