Skip to main content

Advertisement

Log in

Formation mechanism and detection and evaluation methods as well as repair technology of crack damage in fiber-reinforced composite wind turbine blade: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The development of wind power industry is one of the important ways to solve current energy shortage and reduce carbon emissions. As the key component to capture wind energy, fiber-reinforced composite (FRC) wind turbine blades are subject to complex alternating loads in harsh environments. It is easy to produce various damages during long-term service, such as cracks, fiber spalling, and surface abrasion. Among them, crack is the most serious damage. FRC is a kind of composite material with obvious anisotropy, which is very sensitive to crack damage. The generation and propagation of cracks can easily lead to further failure of the whole blade, resulting in great economic losses and safety risks. How to deal with the damage of wind turbine blades in time has become a thorny problem in the wind power industry. In this paper, the current research status of the crack damage for the FRC wind turbine blade is comprehensively reviewed from the formation mechanism of crack and the detection and evaluation methods as well as the repair technologies. Finally, the development of related technologies has been prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Adapted from Sørensen et al. [23, 24, 33], and [34] with permission)

Fig. 3
Fig. 4

(Adapted from Ishikawa et al. [49, 50] and [51] with permission)

Fig. 5

(Adapted from Tiwari et al. [56,57,58,59,60,61,62,63,64,65] and [66] with permission)

Fig. 6

(Adapted from Ibrahim [71] with permission)

Fig. 7

(Adapted from Prawin and Anbarasan [73] with permission)

Fig. 8

(Adapted from Xu et al. [65] with permission)

Fig. 9
Fig. 10

(Adapted from Lai et al. [118] with permission)

Fig. 11
Fig. 12

(Adapted from Ridha et al. [128] with permission)

Fig. 13
Fig. 14
Fig. 15
Fig. 16

(Adapted from Pitanga et al. [126] with permission)

Fig. 17

(Adapted from Khashaba and Najjar [144] with permission)

Fig. 18

(Adapted from Zhang et al. [149] with permission)

Fig. 19

(Adapted from Fu et al. [155] with permission)

Similar content being viewed by others

References

  1. Pablo-Romero MP, Sánchez-Braza A, Galyan A (2021) Renewable energy use for electricity generation in transition economies: evolution, targets and promotion policies. Renew Sustain Energ Rev 138:110481. https://doi.org/10.1016/j.rser.2020.110481

    Article  Google Scholar 

  2. Bosch J, Staffell I, Hawkes AD (2018) Temporally explicit and spatially resolved global offshore wind energy potentials. Energy 163:766–781. https://doi.org/10.1016/j.energy.2018.08.153

    Article  Google Scholar 

  3. Enevoldsen P, Jacobson MZ (2021) Data investigation of installed and output power densities of onshore and offshore wind turbines worldwide. Energy Sustain Dev 60:40–51. https://doi.org/10.1016/j.esd.2020.11.004

    Article  Google Scholar 

  4. Xu J, Liu T (2020) Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development. Energ Policy 142:111538. https://doi.org/10.1016/j.enpol.2020.111538

    Article  Google Scholar 

  5. Schindler D, Schmidt-Rohr S, Jung C (2021) On the spatiotemporal complementarity of the European onshore wind resource. Energy Convers Manag 237:114098. https://doi.org/10.1016/j.enconman.2021.114098

  6. Dai J, Yang X, Wen L (2018) Development of wind power industry in China: a comprehensive assessment. Renew Sustain Energ Rev 97:156–164. https://doi.org/10.1016/j.rser.2018.08.044

    Article  Google Scholar 

  7. Zhang S, Wei J, Chen X, Zhao Y (2020) China in global wind power development: role, status and impact. Renew Sustain Energ Rev 127:109881. https://doi.org/10.1016/j.rser.2020.109881

    Article  Google Scholar 

  8. Hand B, Kelly G, Cashman A (2021) Structural analysis of an offshore vertical axis wind turbine composite blade experiencing an extreme wind load. Mar Struct 75:102858. https://doi.org/10.1016/j.marstruc.2020.102858

    Article  Google Scholar 

  9. Herring R, Dyer K, Martin F, Ward C (2019) The increasing importance of leading edge erosion and a review of existing protection solutions. Renew Sustain Energ Rev 115:109382. https://doi.org/10.1016/j.rser.2019.109382

    Article  Google Scholar 

  10. Pugh K, Nash JW, Reaburn G, Ward C (2021) On analytical tools for assessing the raindrop erosion of wind turbine blades. Renew Sustain Energ Rev 137:110611. https://doi.org/10.1016/j.rser.2020.110611

    Article  Google Scholar 

  11. Jiang Z (2021) Installation of offshore wind turbines: a technical review. Renew Sustain Energ Rev 139:110576. https://doi.org/10.1016/j.rser.2020.110576

    Article  Google Scholar 

  12. Zhao Q, Yuan Y, Sun W, Fan X, Fan P, Ma Z (2020) Reliability analysis of wind turbine blades based on non-Gaussian wind load impact competition failure model. Measurement 164:107950. https://doi.org/10.1016/j.measurement.2020.107950

    Article  Google Scholar 

  13. Guo Y, Wang J, Huang X, Wei X, Liu W (2019) Structural failure test of a 52.5 m wind turbine blade under combined loading. Eng Fail Anal 103:286–293. https://doi.org/10.1016/j.engfailanal.2019.04.069

    Article  Google Scholar 

  14. Wang Y (2017) Multiphysics analysis of lightning strike damage in laminated carbon/glass fiber reinforced polymer matrix composite materials: a review of problem formulation and computational modeling. Compos Pt A-Appl Sci Manuf 101:543–553. https://doi.org/10.1016/j.compositesa.2017.07.010

    Article  Google Scholar 

  15. Jensen JP, Skelton K (2018) Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy. Renew Sustain Energ Rev 97:165–176. https://doi.org/10.1016/j.rser.2018.08.041

    Article  Google Scholar 

  16. Gautam GD, Mishra DR (2019) Firefly algorithm based optimization of kerf quality characteristics in pulsed Nd: YAG laser cutting of basalt fiber reinforced composite. Compos Pt B-Eng 176:107340. https://doi.org/10.1016/j.compositesb.2019.107340

    Article  Google Scholar 

  17. Li A, Zhang J, Zhang F, Li L, Zhu SP, Yang YH (2020) Effects of fiber and matrix properties on the compression strength of carbon fiber reinforced polymer composites. New Carbon Mater 35(6):752–761. https://doi.org/10.1016/S1872-5805(20)60526-1

    Article  Google Scholar 

  18. Zimmermann N, Wang PH (2020) A review of failure modes and fracture analysis of aircraft composite materials. Eng Fail Anal 115:104692. https://doi.org/10.1016/j.engfailanal.2020.104692

    Article  Google Scholar 

  19. Cheon J, Kim M (2021) Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber. Compos Pt B-Eng 217:108872. https://doi.org/10.1016/j.compositesb.2021.108872

    Article  Google Scholar 

  20. Lee D (2018) Local anisotropy analysis based on the Mori-Tanaka model for multiphase composites with fiber length and orientation distributions. Compos Pt B-Eng 148:227–234. https://doi.org/10.1016/j.compositesb.2018.04.050

    Article  Google Scholar 

  21. Cococcetta NM, Pearl D, Jahan MP, Ma J (2020) Investigating surface finish, burr formation, and tool wear during machining of 3D printed carbon fiber reinforced polymer composite. J Manuf Process 56:1304–1316. https://doi.org/10.1016/j.jmapro.2020.04.025

    Article  Google Scholar 

  22. Echavarria E, Hahn B, Van Bussel GJW, Tomiyama T, Sol J (2008) Reliability of wind turbine technology through time. J Sol Energy Eng 130(3):031005. https://doi.org/10.1115/1.2936235

    Article  Google Scholar 

  23. Sørensen BF, Jørgensen E, Debel CP, Jensen FM, Jensen HM, Jacobsen TK, Halling KM (2004) Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1). Summary Report, Denmark

  24. Yasuda Y, Yokoyama S, Minowa M, Satoh T (2012) Classification of lightning damage to wind turbine blades. IEEJ Trans Electr Electron Eng 7(6):559–566. https://doi.org/10.1002/tee.21773

    Article  Google Scholar 

  25. Mishnaevsky L, Branner K, Petersen HN, Beauson J, McGugan M, Sørensen BF (2017) Materials for wind turbine blades: an overview. Materials 10(11):1285. https://doi.org/10.3390/ma10111285

    Article  Google Scholar 

  26. Toft HS, Branner K, Berring P, Sørensen JD (2011) Defect distribution and reliability assessment of wind turbine blades. Eng Struct 33(1):171–180. https://doi.org/10.1016/j.engstruct.2010.10.002

    Article  Google Scholar 

  27. Amenabar I, Mendikute A, López-Arraiza A, Lizaranzu M, Aurrekoetxea J (2011) Comparison and analysis of non-destructive testing techniques suitable for delamination inspection in wind turbine blades. Compos Pt B-Eng 42(5):1298–1305. https://doi.org/10.1016/j.compositesb.2011.01.025

    Article  Google Scholar 

  28. Zhang Z, Guo S, Li Q, Cui F, Malcolm AA, Su Z, Liu M (2020) Ultrasonic detection and characterization of delamination and rich resin in thick composites with waviness. Compos Sci Technol 189:108016. https://doi.org/10.1016/j.compscitech.2020.108016

    Article  Google Scholar 

  29. Mishnaevsky L, Hasager CB, Christian B, Anna-Maria T, Rad SD, Fæster S (2021) Leading edge erosion of wind turbine blades: understanding, prevention and protection. Renew Energ 169:953–969. https://doi.org/10.1016/j.renene.2021.01.044

    Article  Google Scholar 

  30. Hosseini-Toudeshky H, Sheibanian F, Ovesy HR, Goodarzi MS (2020) Prediction of interlaminar fatigue damages in adhesively bonded joints using mixed-mode strain based cohesive zone modeling. Theor Appl Fract Mech 106:102480. https://doi.org/10.1016/j.tafmec.2020.102480

  31. Mu W, Qin G, Na J, Tan W, Liu H, Luan J (2019) Effect of alternating load on the residual strength of environmentally aged adhesively bonded CFRP-aluminum alloy joints. Compos Pt B-Eng 168:87–97. https://doi.org/10.1016/j.compositesb.2018.12.070

    Article  Google Scholar 

  32. Jørgensen JB, Sørensen BF, Kildegaard C (2019) The effect of residual stresses on the formation of transverse cracks in adhesive joints for wind turbine blades. Int J Solids Struct 163:139–156. https://doi.org/10.1016/j.ijsolstr.2018.12.020

    Article  Google Scholar 

  33. Gentry TR, Bank LC, Chen JF, Arias FR, Tristan AH (2018) Adaptive reuse of FRP composite wind turbine blades for civil infrastructure construction. Composites in Civil Engineering CICE 2018. https://par.nsf.gov/biblio/10097342

  34. Reddy A, Indragandhi V, Ravi L, Subramaniyaswamy V (2019) Detection of cracks and damage in wind turbine blades using artificial intelligence-based image analytics. Measurement 147:106823. https://doi.org/10.1016/j.measurement.2019.07.051

    Article  Google Scholar 

  35. Rizk P, Al Saleh N, Younes R, Ilinca A, Khoder J (2020) Hyperspectral imaging applied for the detection of wind turbine blade damage and icing. Remote Sens Appl Soc Environ 18:100291. https://doi.org/10.1016/j.rsase.2020.100291

    Article  Google Scholar 

  36. Ataya S, Ahmed MMZ (2013) Damages of wind turbine blade trailing edge: forms, location, and root causes. Eng Fail Anal 35:480–488. https://doi.org/10.1016/j.engfailanal.2013.05.011

    Article  Google Scholar 

  37. Garolera AC, Madsen SF, Nissim M, Myers JD, Holboell J (2014) Lightning damage to wind turbine blades from wind farms in the US. IEEE Trans Power Deliv 31(3):1043–1049. https://doi.org/10.1109/TPWRD.2014.2370682

    Article  Google Scholar 

  38. Zhou Q, Liu C, Bian X, Lo KL, Li D (2018) Numerical analysis of lightning attachment to wind turbine blade. Renew Energ 116:584–593. https://doi.org/10.1016/j.renene.2017.09.086

    Article  Google Scholar 

  39. Cappugi L, Castorrini A, Bonfiglioli A, Minisci E, Campobasso MS (2021) Machine learning-enabled prediction of wind turbine energy yield losses due to general blade leading edge erosion. Energy Conv Manag 245:114567. https://doi.org/10.1016/j.enconman.2021.114567

    Article  Google Scholar 

  40. Wang J, Huang X, Wei C, Zhang L, Li C, Liu W (2021) Failure analysis at trailing edge of a wind turbine blade through subcomponent test. Eng Fail Anal 2021:105596. https://doi.org/10.1016/j.engfailanal.2021.105596

    Article  Google Scholar 

  41. Afshar A, Ardakani SH, Mohammadi S (2018) Stable discontinuous space–time analysis of dynamic interface crack growth in orthotropic bi-materials using oscillatory crack tip enrichment functions. Int J Mech Sci 140:557–580. https://doi.org/10.1016/j.ijmecsci.2018.03.031

    Article  Google Scholar 

  42. Hossain MZ, Hsueh CJ, Bourdin B, Bhattacharya K (2014) Effective toughness of heterogeneous media. J Mech Phys Solids 71:15–32. https://doi.org/10.1016/j.jmps.2014.06.002

    Article  MathSciNet  Google Scholar 

  43. Xu JQ (2006) Interface mechanics. Science Press, Beijing (in Chinese)

    Google Scholar 

  44. Zhou Y, Huang ZM (2020) Shear deformation of a composite until failure with a debonded interface. Compos Struct 254:112797. https://doi.org/10.1016/j.compstruct.2020.112797

    Article  Google Scholar 

  45. Liu Y, van der Meer FP, Sluys LJ, Ke L (2021) Modeling of dynamic mode I crack growth in glass fiber-reinforced polymer composites: fracture energy and failure mechanism. Eng Fract Mech 243:107522. https://doi.org/10.1016/j.engfracmech.2020.107522

    Article  Google Scholar 

  46. Liu H, Meng X, Zhang H, Nie H (2019) The dynamic crack propagation behavior of mode I interlaminar crack in unidirectional carbon/epoxy composites. Eng Fract Mech 215:65–82. https://doi.org/10.1016/j.engfracmech.2019.05.004

    Article  Google Scholar 

  47. Song Y, Hu H, Han B (2020) Stress intensity factors of a Griffith crack in a porous medium subjected to a time-harmonic stress wave. Eng Fract Mech 223:106801. https://doi.org/10.1016/j.engfracmech.2019.106801

    Article  Google Scholar 

  48. Allegri G, Scarpa FL (2014) On the asymptotic crack-tip stress fields in nonlocal orthotropic elasticity. Int J Solids Struct 51(2):504–515. https://doi.org/10.1016/j.ijsolstr.2013.10.021

    Article  Google Scholar 

  49. Ishikawa T, Tezura M, Kizuka T (2020) Direct observation of microstructural fracture dynamics in carbon fiber reinforced plastics via in situ transmission electron microscopy. Compos Sci Technol 198:108264. https://doi.org/10.1016/j.compscitech.2020.108264

    Article  Google Scholar 

  50. Canal LP, González C, Segurado J, Lorca JL (2012) Intraply fracture of fiber-reinforced composites: microscopic mechanisms and modeling. Compos Sci Technol 72(11):1223–1232. https://doi.org/10.1016/j.compscitech.2012.04.008

    Article  Google Scholar 

  51. Ouyang T, Sun W, Bao R, Tan R (2021) Effects of matrix cracks on delamination of composite laminates subjected to low-velocity impact. Compos Struct 262:113354. https://doi.org/10.1016/j.compstruct.2020.113354

    Article  Google Scholar 

  52. Gu J, Yu T, Tanaka S, Yuan H, Bui TQ (2020) Crack growth adaptive XIGA simulation in isotropic and orthotropic materials. Comput Method Appl Mech Eng 365:113016. https://doi.org/10.1016/j.cma.2020.113016

    Article  MathSciNet  MATH  Google Scholar 

  53. McGugan M, Pereira G, Sørensen BF, Toftegaard H, Branner K (2015) Damage tolerance and structural monitoring for wind turbine blades. Philosophical Transactions of the Royal Society A: Mathematical, Phys Eng Sci 373(2035):20140077. https://doi.org/10.1098/rsta.2014.0077

    Article  Google Scholar 

  54. Rubiella C, Hessabi CA, Fallah AS (2018) State of the art in fatigue modelling of composite wind turbine blades. Int J Fatigue 117:230–245. https://doi.org/10.1016/j.ijfatigue.2018.07.031

    Article  Google Scholar 

  55. Luan C, Yao X, Fu J (2021) Fabrication and characterization of in situ structural health monitoring hybrid continuous carbon/glass fiber–reinforced thermoplastic composite. Int J Adv Manuf Technol 116:3207–3215. https://doi.org/10.1007/s00170-021-07666-3

    Article  Google Scholar 

  56. Tiwari KA, Raisutis R, Samaitis V (2017) Hybrid signal processing technique to improve the defect estimation in ultrasonic non-destructive testing of composite structures. Sensors 17(12):2858. https://doi.org/10.3390/s17122858

    Article  Google Scholar 

  57. Xie J, Liu J, Chen J, Zi Y (2022) Blade damage monitoring method base on frequency domain statistical index of shaft’s random vibration. Mech Syst Signal Proc 165:108351. https://doi.org/10.1016/j.ymssp.2021.108351

    Article  Google Scholar 

  58. Liu P, Groves RM, Benedictus R (2014) 3D monitoring of delamination growth in a wind turbine blade composite using optical coherence tomography. NDT E Int 64:52–58. https://doi.org/10.1016/j.ndteint.2014.03.003

    Article  Google Scholar 

  59. Tan KT, Watanabe N, Iwahori Y (2011) X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Compos Pt B-Eng 42(4):874–884. https://doi.org/10.1016/j.compositesb.2011.01.011

    Article  Google Scholar 

  60. Hwang S, An YK, Sohn H (2017) Continuous line laser thermography for damage imaging of rotating wind turbine blades. Procedia Eng 188:225–232. https://doi.org/10.1016/j.proeng.2017.04.478

    Article  Google Scholar 

  61. Lee K, Aihara A, Puntsagdash G, Kawaguchi T, Sakamoto H, Okuma M (2017) Feasibility study on a strain based deflection monitoring system for wind turbine blades. Mech Syst Signal Pr 82:117–129. https://doi.org/10.1016/j.ymssp.2016.05.011

    Article  Google Scholar 

  62. Dehui W, Fan Y, Teng W, Wenxiong C (2021) A novel electromagnetic nondestructive testing method for carbon fiber reinforced polymer laminates based on power loss. Compos Struct 276:114421. https://doi.org/10.1016/j.compstruct.2021.114421

    Article  Google Scholar 

  63. Xu D, Wen C, Liu J (2019) Wind turbine blade surface inspection based on deep learning and UAV-taken images. J Renew Sustain Energy 11(5):053305. https://doi.org/10.1063/1.5113532

    Article  Google Scholar 

  64. Fotouhi S, Pashmforoush F, Bodaghi M, Fotouhi M (2021) Autonomous damage recognition in visual inspection of laminated composite structures using deep learning. Compos Struct 268:113960. https://doi.org/10.1016/j.compstruct.2021.113960

    Article  Google Scholar 

  65. Xu D, Liu PF, Chen ZP (2021) Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission. Compos Struct 255:112954. https://doi.org/10.1016/j.compstruct.2020.112954

    Article  Google Scholar 

  66. Heslehurst RB (2014) Defects and damage in composite materials and structures. CRC Press, Boca Raton. https://doi.org/10.1201/b16765

    Article  Google Scholar 

  67. Every AG (2014) The importance of ultrasonics in nondestructive testing and evaluation. Ultrasonics 54(7):1717–1718. https://doi.org/10.1016/j.ultras.2014.06.009

    Article  Google Scholar 

  68. Ji B, Zhang Q, Cao J, Li H, Zhang B (2021) Non-contact detection of delamination in stainless steel/carbon steel composites with laser ultrasonic. Optik 226:165893. https://doi.org/10.1016/j.ijleo.2020.165893

    Article  Google Scholar 

  69. Oliveira MA, Simas Filho EF, Albuquerque MCS, Santos YTB, Da SIC, Farias CTT (2020) Ultrasound-based identification of damage in wind turbine blades using novelty detection. Ultrasonics 108:106166. https://doi.org/10.1016/j.ultras.2020.106166

    Article  Google Scholar 

  70. Tiwari KA, Raisutis R (2018) Refinement of defect detection in the contact and non-contact ultrasonic non-destructive testing of wind turbine blade using guided waves. Procedia Struct Integr 13:1566–1570. https://doi.org/10.1016/j.prostr.2018.12.320

    Article  Google Scholar 

  71. Ibrahim ME (2021) Ultrasonic inspection of hybrid polymer matrix composites. Compos Sci Technol 208:108755. https://doi.org/10.1016/j.compscitech.2021.108755

    Article  Google Scholar 

  72. Seguel F, Meruane V (2018) Damage assessment in a sandwich panel based on full-field vibration measurements. J Sound Vib 417:1–18. https://doi.org/10.1016/j.jsv.2017.11.048

    Article  Google Scholar 

  73. Prawin J, Anbarasan R (2021) A novel Mel-frequency cepstral analysis based damage diagnostic technique using ambient vibration data. Eng Struct 228:111552. https://doi.org/10.1016/j.engstruct.2020.111552

    Article  Google Scholar 

  74. Wang ZX, Qiao P, Xu J (2015) Vibration analysis of laminated composite plates with damage using the perturbation method. Compos Pt B-Eng 72:160–174. https://doi.org/10.1016/j.compositesb.2014.12.005

    Article  Google Scholar 

  75. Quy TB, Kim JM (2021) Crack detection and localization in a fluid pipeline based on acoustic emission signals. Mech Syst Signal Pr 150:107254. https://doi.org/10.1016/j.ymssp.2020.107254

    Article  Google Scholar 

  76. Yang R, He Y, Zhang H (2016) Progress and trends in nondestructive testing and evaluation for wind turbine composite blade. Renew Sustain Energ Rev 60:1225–1250. https://doi.org/10.1016/j.rser.2016.02.026

    Article  Google Scholar 

  77. Chen B, Yu S, Yu Y (2020) Acoustical damage detection of wind turbine blade using the improved incremental support vector data description. Renew Energ 156:548–557. https://doi.org/10.1016/j.renene.2020.04.096

    Article  Google Scholar 

  78. Wang L, Zhang Z (2017) Automatic detection of wind turbine blade surface cracks based on UAV-taken images. IEEE T Ind Electron 64(9):7293–7303. https://doi.org/10.1109/TIE.2017.2682037

    Article  Google Scholar 

  79. Jiang F, Zhidong G, Zengshan LI, Xiaodong WANG (2021) A method of predicting visual detectability of low-velocity impact damage in composite structures based on logistic regression model. Chinese J Aeronaut 34(1):296–308. https://doi.org/10.1016/j.cja.2020.10.006

    Article  Google Scholar 

  80. Bharat G, Raju RSU, Srinivas B (2021) Surface finish evaluation using curvelet transforms based machine vision system. Mater Today Proc 44:500–505. https://doi.org/10.1016/j.matpr.2020.10.203

    Article  Google Scholar 

  81. Yang X, Zhang Y, Lv W, Wang D (2021) Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier. Renew Energ 163:386–397. https://doi.org/10.1016/j.renene.2020.08.125

    Article  Google Scholar 

  82. Zheng X, Zheng S, Kong Y, Chen J (2021) Recent advances in surface defect inspection of industrial products using deep learning techniques. Int J Adv Manuf Technol 113:35–58. https://doi.org/10.1007/s00170-021-06592-8

    Article  Google Scholar 

  83. Guo J, Liu C, Cao J, Jiang D (2021) Damage identification of wind turbine blades with deep convolutional neural networks. Renew Energ 174:122–133. https://doi.org/10.1016/j.renene.2021.04.040

    Article  Google Scholar 

  84. Denhof D, Staar B, Lütjen M, Freitag M (2019) Automatic optical surface inspection of wind turbine rotor blades using convolutional neural networks. Procedia CIRP 81:1166–1170. https://doi.org/10.1016/j.procir.2019.03.286

    Article  Google Scholar 

  85. Nsengiyumva W, Zhong S, Lin J, Zhang Q, Zhong J, Huang Y (2021) Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: a state-of-the-art review. Compos Struct 256:112951. https://doi.org/10.1016/j.compstruct.2020.112951

    Article  Google Scholar 

  86. Wu GJ, Wang J, Zhang Y (2020) Research on infrared thermal image detection of wind turbine blade damage under natural excitation. Acta Energiae Solaris Sinica 41(09):353–358 (in Chinese)

    Google Scholar 

  87. Bagavathiappan S, Lahiri BB, Saravanan T, Philip J, Jayakumar T (2013) Infrared thermography for condition monitoring–a review. Infrared Phys Techn 60:35–55. https://doi.org/10.1016/j.infrared.2013.03.006

    Article  Google Scholar 

  88. Davis CE, Norman P, Ratcliffe C, Crane R (2012) Broad area damage detection in composites using fibre bragg grating arrays. Struct Health Monit 11(6):724–732. https://doi.org/10.1177/1475921712455681

    Article  Google Scholar 

  89. Du Y, Zhou S, Jing X, Peng Y, Wu H, Kwok N (2020) Damage detection techniques for wind turbine blades: a review. Mech Syst Signal Pr 141:106445. https://doi.org/10.1016/j.ymssp.2019.106445

    Article  Google Scholar 

  90. Ozbek M, Rixen DJ, Erne O, Sanow G (2010) Feasibility of monitoring large wind turbines using photogrammetry. Energy 35(12):4802–4811. https://doi.org/10.1016/j.energy.2010.09.008

    Article  Google Scholar 

  91. Márquez FPG, Chacón AMP (2020) A review of non-destructive testing on wind turbines blades. Renew Energ 161:998–1010. https://doi.org/10.1016/j.renene.2020.07.145

    Article  Google Scholar 

  92. Li T, Yang Y, Gu XW, Long SG, Wang ZH (2019) Quantitative research into millimetre-scale debonding defects in wind turbine blade bonding structures using ultrasonic inspection: numerical simulations. Insight 61(6):316–323. https://doi.org/10.1784/insi.2019.61.6.316

    Article  Google Scholar 

  93. Tiwari KA, Raisutis R, Samaitis V (2017) Signal processing methods to improve the Signal-to-noise ratio (SNR) in ultrasonic non-destructive testing of wind turbine blade. Procedia Struct Integr 5:1184–1191. https://doi.org/10.1016/j.prostr.2017.07.036

    Article  Google Scholar 

  94. Della CN (2015) Free vibration analysis of composite beams with overlapping delaminations under axial compressive loading. Compos Struct 133:1168–1176. https://doi.org/10.1016/j.compstruct.2015.08.008

    Article  Google Scholar 

  95. Beale C, Niezrecki C, Inalpolat M (2020) An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage detection from wind turbine blades. Mech Syst Signal Proc 142:106754. https://doi.org/10.1016/j.ymssp.2020.106754

    Article  Google Scholar 

  96. Eshkevari M, Rezaee MJ, Zarinbal M, Izadbakhsh H (2021) Automatic dimensional defect detection for glass vials based on machine vision: a heuristic segmentation method. J Manuf Process 68:973–989. https://doi.org/10.1016/j.jmapro.2021.06.018

    Article  Google Scholar 

  97. Dai W, Li D, Tang D, Jiang Q, Wang D, Wang H, Peng Y (2021) Deep learning assisted vision inspection of resistance spot welds. J Manuf Process 62:262–274. https://doi.org/10.1016/j.jmapro.2020.12.015

    Article  Google Scholar 

  98. Chady T, Sikora R, Lopato P, Psuj G, Szymanik B, Balasubramaniam K, Rajagopal P (2016) Wind turbine blades inspection techniques. Prz Elektrotechniczny 1(5):3–6. https://doi.org/10.15199/48.2016.05.01

  99. Lizaranzu M, Lario A, Chiminelli A, Amenabar I (2015) Non-destructive testing of composite materials by means of active thermography-based tools. Infrared Phys Technol 71:113–120. https://doi.org/10.1016/j.infrared.2015.02.006

    Article  Google Scholar 

  100. Tsai JT, Dustin JS, Mansson JA (2021) Distributed optical sensing for monitoring strain evolution during mechanical testing of composite laminates. Polym Test 96:107076. https://doi.org/10.1016/j.polymertesting.2021.107076

    Article  Google Scholar 

  101. Contreras EQ, Huang J, Posusta RS, Sharma DK, Yan C, Guraieb P, Tomson MB, Tomson RC (2014) Optical measurement of uniform and localized corrosion of C1018, SS 410, and Inconel 825 alloys using white light interferometry. Corrosion Sci 87:383–391. https://doi.org/10.1016/j.corsci.2014.06.046

    Article  Google Scholar 

  102. Caballero L, Colomer FA, Bellot AC, Domingo-Pardo C, Leganes JL, Agramunt RJ, Contreras P, Monserrate M, Olleros RP, Perez MDL (2018) Gamma-ray imaging system for real-time measurements in nuclear waste characterisation. J Instrum 13(03):P03016. https://doi.org/10.1088/1748-0221/13/03/P03016

    Article  Google Scholar 

  103. Ali KB, Abdalla AN, Rifai D, Faraj MA (2017) Review on system development in eddy current testing and technique for defect classification and characterization. IET Circ Devices Syst 11(4):338–351. https://doi.org/10.1049/iet-cds.2016.0327

    Article  Google Scholar 

  104. Ni QQ, Hong J, Xu P, Xu Z, Khvostunkov K, Xia H (2021) Damage detection of CFRP composites by electromagnetic wave nondestructive testing (EMW-NDT). Compos Sci Technol 210:108839. https://doi.org/10.1016/j.compscitech.2021.108839

    Article  Google Scholar 

  105. Mohammadi R, Najafabadi MA, Saghafi H, Saeedifar M, Zarouchas D (2021) A quantitative assessment of the damage mechanisms of CFRP laminates interleaved by PA66 electrospun nanofibers using acoustic emission. Compos Struct 258:113395. https://doi.org/10.1016/j.compstruct.2020.113395

    Article  Google Scholar 

  106. Harman AB, Rider AN (2011) Impact damage tolerance of composite repairs to highly-loaded, high temperature composite structures. Compos Pt A-Appl Sci Manuf 42(10):1321–1334. https://doi.org/10.1016/j.compositesa.2011.05.015

    Article  Google Scholar 

  107. Chen SJ (2001) Manual of repair of composite structures. Aviation Industry Press, Beijing (in Chinese)

    Google Scholar 

  108. Liu TJ, Zhang WF, Fang XL (2014) The research of quantitative analysis methods of composite structure repair tolerance. AMM 602–605:503–506. https://doi.org/10.4028/www.scientific.net/amm.602-605.503

    Article  Google Scholar 

  109. Mishnaevsky L (2019) Repair of wind turbine blades: review of methods and related computational mechanics problems. Renew Energ 140:828–839. https://doi.org/10.1016/j.renene.2019.03.113

    Article  Google Scholar 

  110. Lekou DJ, Vionis P (2002) Report on repair techniques for composite parts of wind turbine blades. OPTIMAT Blades, WMC Technology Center: MV Wieringerwer, The Netherlands

  111. Jefferson AJ, Arumugam V, Dhakal HN (2018) Repair of polymer composites: methodology, techniques, and challenges. Woodhead Publishing

    Google Scholar 

  112. Zhou W, Ji X, Yang S, Liu J, Ma L (2021) Review on the performance improvements and non-destructive testing of patches repaired composites. Compos Struct 263:113659. https://doi.org/10.1016/j.compstruct.2021.113659

    Article  Google Scholar 

  113. Park SS, Choe HS, Kwak BS, Choi JH, Kweon JH (2018) Micro-bolt repair for delaminated composite plate under compression. Compos Struct 192:245–254. https://doi.org/10.1016/j.compstruct.2018.02.087

    Article  Google Scholar 

  114. Rahman MAASB, Lai WL, Saeedipour H, Goh KL (2019) Cost-effective and efficient resin-injection device for repairing damaged composites. Reinf Plast 63(3):156–160. https://doi.org/10.1016/j.repl.2018.11.001

    Article  Google Scholar 

  115. Ivañez I, Garcia-Castillo SK, Sanchez-Saez S, Barbero E (2020) Experimental study of the impact behavior of repaired thin laminates with double composite patch. Mech Adv Mater Struct 27(19):1701–1708. https://doi.org/10.1080/15376494.2018.1524952

    Article  Google Scholar 

  116. Yun JH, Choi JH, Kweon JH (2014) A study on the strength improvement of the multi-bolted joint. Compos Struct 108:409–416. https://doi.org/10.1016/j.compstruct.2013.09.047

    Article  Google Scholar 

  117. Kradinov V, Hanauska J, Barut A, Madenci E, Ambur DR (2002) Bolted patch repair of composite panels with a cutout. Compos Struct 56(4):423–444. https://doi.org/10.1016/S0263-8223(02)00027-2

    Article  Google Scholar 

  118. Lai WL, Saeedipour H, Goh KL (2020) Mechanical properties of low-velocity impact damaged carbon fibre reinforced polymer laminates: effects of drilling holes for resin-injection repair. Compos Struct 235:111806. https://doi.org/10.1016/j.compstruct.2019.111806

    Article  Google Scholar 

  119. Thunga M, Larson K, Lio W, Weerasekera T, Akinc M, Kessler MR (2013) Low viscosity cyanate ester resin for the injection repair of hole-edge delaminations in bismaleimide/carbon fiber composites. Compos Pt A-Appl Sci Manuf 52:31–37. https://doi.org/10.1016/j.compositesa.2013.05.001

    Article  Google Scholar 

  120. Thunga M, Bauer A, Obusek K, Meilunas R, Akinc M, Kessler MR (2014) Injection repair of carbon fiber/bismaleimide composite panels with bisphenol E cyanate ester resin. Compos Sci Technol 100:174–181. https://doi.org/10.1016/j.compscitech.2014.05.024

    Article  Google Scholar 

  121. Andrew JJ, Srinivasan SM, Arockiarajan A (2018) The role of adhesively bonded super hybrid external patches on the impact and post-impact response of repaired glass/epoxy composite laminates. Compos Struct 184:848–859. https://doi.org/10.1016/j.compstruct.2017.10.070

    Article  Google Scholar 

  122. Soutis C, Duan DM, Goutas P (1999) Compressive behaviour of CFRP laminates repaired with adhesively bonded external patches. Compos Struct 45(4):289–301. https://doi.org/10.1016/S0263-8223(99)00033-1

    Article  Google Scholar 

  123. Andrew JJ, Arumugam V (2017) Effect of patch hybridization on the tensile behavior of patch repaired glass/epoxy composite laminates using acoustic emission monitoring. Int J Adhes Adhes 74:155–166. https://doi.org/10.1016/j.ijadhadh.2017.01.014

    Article  Google Scholar 

  124. Xiaoquan C, Baig Y, Renwei H, Yujian G, Jikui Z (2013) Study of tensile failure mechanisms in scarf repaired CFRP laminates. Int J Adhes Adhes 41:177–185. https://doi.org/10.1016/j.ijadhadh.2012.10.015

    Article  Google Scholar 

  125. Liu SQ, Yang T, Du Y (2017) Repairing technology of laminated composite patch. Aerosp Mater Technol 47(02):71–76 (in Chinese)

    Google Scholar 

  126. Pitanga MY, Cioffi MOH, Voorwald HJC, Wang CH (2021) Reducing repair dimension with variable scarf angles. Int J Adhes Adhes 104:102752. https://doi.org/10.1016/j.ijadhadh.2020.102752

    Article  Google Scholar 

  127. Marques TPZ, Mayer S, Cândido GM, Wang CH (2021) Fractographic analysis of scarf repaired carbon/epoxy laminates submitted to tensile strength. Eng Fail Anal 124:105374. https://doi.org/10.1016/j.engfailanal.2021.105374

    Article  Google Scholar 

  128. Ridha M, Tan VBC, Tay TE (2011) Traction–separation laws for progressive failure of bonded scarf repair of composite panel. Compos Struct 93(4):1239–1245. https://doi.org/10.1016/j.compstruct.2010.10.015

    Article  Google Scholar 

  129. Bendemra H, Compston P, Crothers PJ (2015) Optimisation study of tapered scarf and stepped-lap joints in composite repair patches. Compos Struct 130:1–8. https://doi.org/10.1016/j.compstruct.2015.04.016

    Article  Google Scholar 

  130. Fifo O, Ryan K, Basu B (2015) Application of self-healing technique to fibre reinforced polymer wind turbine blade. Smart Struct Syst 16(4):593–606. https://doi.org/10.12989/SSS.2015.16.4.593

  131. Shen R, Ren M, Amano RS, Long M, Gong Y (2020) Self-healing of wind turbine blades by pressurized delivery of healing agent. J Energ Resour Technol 142(8):081304. https://doi.org/10.1115/1.4045928

    Article  Google Scholar 

  132. Ding H (2013) Surface enhancement and repairing of critical wind turbine components through laser-based manufacturing processes. North American Wind Energy Academy (NAWEA), Boulder

  133. Sonat E, Özerinç S (2021) Failure behavior of scarf-bonded woven fabric CFRP laminates. Compos Struct 258:113205. https://doi.org/10.1016/j.compstruct.2020.113205

    Article  Google Scholar 

  134. Adin H (2012) The effect of angle on the strain of scarf lap joints subjected to tensile loads. Appl Math Model 36(7):2858–2867. https://doi.org/10.1016/j.apm.2011.09.079

    Article  Google Scholar 

  135. Balijepalli B, Lutz A, Guillaume JL (2012) Epoxy adhesives for large wind turbine blades. Adhes Adhes Sealants 9:12–15. https://doi.org/10.1365/s35784-012-0087-8

    Article  Google Scholar 

  136. Murray RE, Roadman J, Beach R (2019) Fusion joining of thermoplastic composite wind turbine blades: lap-shear bond characterization. Renew Energ 140:501–512. https://doi.org/10.1016/j.renene.2019.03.085

    Article  Google Scholar 

  137. Marsh G (2011) Meeting the challenge of wind turbine blade repair. Reinf Plast 55(4):32–36. https://doi.org/10.1016/S0034-3617(11)70112-6

    Article  Google Scholar 

  138. Fang X, Seeger JP (2014) U.S. Patent Application No.13/619,154

  139. Xu W, Wei Y (2013) Influence of adhesive thickness on local interface fracture and overall strength of metallic adhesive bonding structures. Int J Adhes Adhes 40:158–167. https://doi.org/10.1016/j.ijadhadh.2012.07.012

    Article  Google Scholar 

  140. El Zaroug M, Kadioglu F, Demiral M, Saad D (2018) Experimental and numerical investigation into strength of bolted, bonded and hybrid single lap joints: effects of adherend material type and thickness. Int J Adhes Adhes 87:130–141. https://doi.org/10.1016/j.ijadhadh.2018.10.006

    Article  Google Scholar 

  141. Liao L, Huang C, Sawa T (2013) Effect of adhesive thickness, adhesive type and scarf angle on the mechanical properties of scarf adhesive joints. Int J Solids Struct 50(25–26):4333–4340. https://doi.org/10.1016/j.ijsolstr.2013.09.005

    Article  Google Scholar 

  142. Ji G, Ouyang Z, Li G (2013) Effects of bondline thickness on Mode-I nonlinear interfacial fracture of laminated composites: an experimental study. Compos Pt B-Eng 47:1–7. https://doi.org/10.1016/j.compositesb.2012.10.048

    Article  Google Scholar 

  143. Guo L, Liu J, Xia H, Li X, Zhang X, Yang H (2021) Effects of surface treatment and adhesive thickness on the shear strength of precision bonded joints. Polym Test 94:107063. https://doi.org/10.1016/j.polymertesting.2021.107063

    Article  Google Scholar 

  144. Khashaba UA, Najjar IMR (2018) Adhesive layer analysis for scarf bonded joint in CFRE composites modified with MWCNTs under tensile and fatigue loads. Compos Struct 184:411–427. https://doi.org/10.1016/j.compstruct.2017.09.095

    Article  Google Scholar 

  145. Patil AS, Moheimani R, Dalir H (2019) Thermomechanical analysis of composite plates curing process using ANSYS composite cure simulation. Therm Sci Eng Prog 14:100419. https://doi.org/10.1016/j.tsep.2019.100419

    Article  Google Scholar 

  146. Lu Y, Li Y, Li N, Wu X (2017) Reduction of composite deformation based on tool-part thermal expansion matching and stress-free temperature theory. Int J Adv Manuf Technol 88:1703–1710. https://doi.org/10.1007/s00170-016-8862-3

    Article  Google Scholar 

  147. Muralidhara B, Babu SPK, Suresha B (2020) Utilizing vacuum bagging process to prepare carbon fiber/epoxy composites with improved mechanical properties. Mater Today: Proc 27(3):2022–2028. https://doi.org/10.1016/j.matpr.2019.09.051

    Article  Google Scholar 

  148. Wang CH, Duong CN (2015) Bonded joints and repairs to composite airframe structures. Academic Press. https://doi.org/10.1016/C2013-0-00565-8

    Article  Google Scholar 

  149. Zhang J, Cheng X, Zhang J, Xin GUO, Huang W (2020) Effect of curing condition on bonding quality of scarf-repaired composite laminates. Chinese J Aeronaut 33(8):2257–2267. https://doi.org/10.1016/j.cja.2019.08.016

    Article  Google Scholar 

  150. Mehdikhani M, Gorbatikh L, Verpoest I, Lomov SVJ (2019) Voids in fiber-reinforced polymer composites: a review on their formation, characteristics, and effects on mechanical performance. J Compos Mater 53(12):1579–1669. https://doi.org/10.1177/0021998318772152

    Article  Google Scholar 

  151. Levy A, Kratz J, Hubert P (2015) Air evacuation during vacuum bag only prepreg processing of honeycomb sandwich structures: in-plane air extraction prior to cure. Compos Pt A-Appl Sci Manuf 68:365–376. https://doi.org/10.1016/j.compositesa.2014.10.013

    Article  Google Scholar 

  152. Gruener JT, Vashisth A, Pospisil MJ, Camacho AC, Oh JH, Sophiea D, Mastroianni SE, Auvil TJ, Green MJ (2020) Local heating and curing of carbon nanocomposite adhesives using radio frequencies. J Manuf Process 58:436–442. https://doi.org/10.1016/j.jmapro.2020.08.039

    Article  Google Scholar 

  153. Prasatya P, McKenna GB, Simon SL (2001) A viscoelastic model for predicting isotropic residual stresses in thermosetting materials: effects of processing parameters. J Compos Mater 35(10):826–848. https://doi.org/10.1177/002199801772662424

    Article  Google Scholar 

  154. Hui X, Xu Y, Zhang W (2021) An integrated modeling of the curing process and transverse tensile damage of unidirectional CFRP composites. Compos Struct 263:113681. https://doi.org/10.1016/j.compstruct.2021.113681

    Article  Google Scholar 

  155. Fu Y, Gao X, Yao X (2020) Mesoscopic simulation on curing deformation and residual stresses of 3D braided composites. Compos Struct 246:112387. https://doi.org/10.1016/j.compstruct.2020.112387

    Article  Google Scholar 

  156. Sarrazin H, Kim B, Ahn SH, Springer GS (1995) Effects of processing temperature and layup on springback. J Compos Mater 29(10):1278–1294. https://doi.org/10.1177/002199839502901001

    Article  Google Scholar 

  157. Madhukar MS, Genidy MS, Russell JD (2000) A new method to reduce cure-induced stresses in thermoset polymer composites, part I: test method. J Compos Mater 34(22):1882–1904. https://doi.org/10.1106/HUCY-DY2B-2N42-UJBX

    Article  Google Scholar 

  158. Bazheryanu VV, Zaychenko IV, Zharikova EP (2020) Local repair of parts from polymer composite material with the use of portable hot bonder control systems//Materials Science Forum. Trans Tech Publications Ltd 992:347–352. https://doi.org/10.4028/www.scientific.net/MSF.992.347

    Article  Google Scholar 

  159. Sun K, Yan D, Kong J, Wei R, Liu W (2014) Scarf repair process of composite honeycomb sandwich structure by hot bonder. J Aeronaut Mater 34(2):51–57. https://doi.org/10.3969/j.issn.1005-5053.2014.2.010(inChinese)

    Article  Google Scholar 

  160. Rao S, Vijapur L, Prakash MR (2020) Effect of incident microwave frequency on curing process of polymer matrix composites. J Manuf Process 55:198–207. https://doi.org/10.1016/j.jmapro.2020.04.003

    Article  Google Scholar 

  161. Liu X, He Y, Qiu D, Yu Z (2019) Numerical optimizing and experimental evaluation of stepwise rapid high-pressure microwave curing carbon fiber/epoxy composite repair patch. Compos Struct 230:111529. https://doi.org/10.1016/j.compstruct.2019.111529

    Article  Google Scholar 

  162. Li G, Hedlund S, Pang SS, Alaywan W, Eggers J, Abadie C (2003) Repair of damaged RC columns using fast curing FRP composites. Compos Pt B-Eng 34(3):261–271. https://doi.org/10.1016/S1359-8368(02)00101-4

    Article  Google Scholar 

  163. Xi J, Xia R, He Y, Yu Z (2020) The fatigue repairing evaluation of hybrid woven composite patch with 2D&3D styles bonded Al-alloy plates under UV and thermal curing. Compos Pt B-Eng 185:107743. https://doi.org/10.1016/j.compositesb.2020.10774

    Article  Google Scholar 

Download references

Funding

This paper was supported by the National Natural Science Foundation of China (No. 51975208, No. 51775184, No. 51905169) and the Natural Science Foundation of Hunan Province (No. 2020JJ4301). Also, it was partially supported by the National Research Foundation of Korea (NRF) grant, which is funded by the Korean government (MSIT) (2020R1A2B5B02001755).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shujian Li or Tae Jo Ko.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Li, S., Li, C. et al. Formation mechanism and detection and evaluation methods as well as repair technology of crack damage in fiber-reinforced composite wind turbine blade: a review. Int J Adv Manuf Technol 120, 5649–5672 (2022). https://doi.org/10.1007/s00170-022-09230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09230-z

Keywords

Navigation