Skip to main content
Log in

Effects of thermal undercooling and thermal cycles on the grain and microstructure evolution of TC17 titanium alloy repaired by wire arc additive manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Wire arc additive manufacturing (WAAM) can be used to repair blades or blisk made of titanium alloy with the advantage of high efficiency and low-cost. In this work, the finite element model of repairing the blade based on the arc heat source was established to investigate it. Results showed that the maximum effect of thermal undercooling appeared when the peak current transformed to the base current (1 Hz or 5 Hz), which will promote the grains refinement with the combination of sufficient constitutional supercooling. Compared to the single-layer deposition, the microstructure in the near-heat affected zone (near-HAZ) of multi-layer deposition changes from the metastable β phases to the extremely fine α phases, which was caused by the repeated thermal cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

modified by our previous work [26])

Fig. 6

modified by our previous work [26])

Fig. 7
Fig. 8
Fig. 9
Fig. 10

modified by our previous work[25], b the microstructure at the near-HAZ, and c the thermal cycle at the near-HAZ

Similar content being viewed by others

References

  1. Srinivasan D (2021) Challenges in qualifying additive manufacturing for turbine components: a review. Trans Indian Inst Met. https://doi.org/10.1007/s12666-021-02199-5

    Article  Google Scholar 

  2. Denkena B, Boess V, Nespor D et al (2015) Engine blade regeneration: a literature review on common technologies in terms of machining. Int J Adv Manuf Technol 81:917–924. https://doi.org/10.1007/s00170-015-7256-2

    Article  Google Scholar 

  3. Zhao H, Zhang G, Yin Z, Wu L (2012) Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping. J Mater Process Technol 212. https://doi.org/10.1016/j.jmatprotec.2011.09.012

  4. Sun C, Wang Y, McMurtrey MD et al (2021) Additive manufacturing for energy: a review. Appl Energy 282. https://doi.org/10.1016/j.apenergy.2020.116041

  5. Shan JG, Ren JL, Khorunov VF (2002) Repairing of the defects of the engine vanes of an aeroplane by light beam brazing. J Mater Process Technol 121. https://doi.org/10.1016/S0924-0136(01)01187-6

  6. Laux B, Piegert S, Rösler J (2010) Advanced braze alloys for fast epitaxial high-temperature brazing of single-crystalline nickel-base superalloys. J Eng Gas Turbines Power 132. https://doi.org/10.1115/1.3159376

  7. Arhami F, Mirsalehi SE, Sadeghian A, Johar MH (2019) The joint properties of a high-chromium Ni-based superalloy made by diffusion brazing: Microstructural evolution, corrosion resistance and mechanical behavior. J Manuf Process 37. https://doi.org/10.1016/j.jmapro.2018.11.025

  8. Huang X, Miglietti W (2012) Wide gap braze repair of gas turbine blades and vanes-a review. J Eng Gas Turbines Power 134

  9. Ye Y, Zou G, Long W et al (2019) Diffusion brazing repair of IN738 superalloy with crack-like defect: microstructure and tensile properties at high temperatures. Sci Technol Weld Join 24. https://doi.org/10.1080/13621718.2018.1477546

  10. Ma TJ, Li WY, Zhong B et al (2012) Effect of post-weld heat treatment on microstructure and property of linear friction welded Ti17 titanium alloy joint. Sci Technol Weld Join 17. https://doi.org/10.1179/1362171811Y.0000000079

  11. Ma TJ, Chen X, Li WY et al (2016) Microstructure and mechanical property of linear friction welded nickel-based superalloy joint. Mater Des 89. https://doi.org/10.1016/j.matdes.2015.09.143

  12. Parikh VK, Badgujar AD, Ghetiya ND (2019) Joining of metal matrix composites using friction stir welding: a review. Mater Manuf Process 34

  13. Zhang Q, Chen J, Tan H et al (2016) Microstructure evolution and mechanical properties of laser additive manufactured Ti–5Al–2Sn–2Zr–4Mo–4Cr alloy. Trans Nonferrous Met Soc China (English Ed 26). https://doi.org/10.1016/S1003-6326(16)64300-5

  14. He B, Tian XJ, Cheng X et al (2017) Effect of weld repair on microstructure and mechanical properties of laser additive manufactured Ti-55511 alloy. Mater Des 119. https://doi.org/10.1016/j.matdes.2017.01.054

  15. Zhao Z, Chen J, Zhang Q et al (2017) Microstructure and mechanical properties of laser additive repaired Ti17 titanium alloy. Trans Nonferrous Met Soc China (English Ed 27). https://doi.org/10.1016/S1003-6326(17)60289-9

  16. Shen J, Zeng Z, Nematollahi M et al (2021) In-situ synchrotron X-ray diffraction analysis of the elastic behaviour of martensite and H-phase in a NiTiHf high temperature shape memory alloy fabricated by laser powder bed fusion. Addit Manuf Lett 1. https://doi.org/10.1016/j.addlet.2021.100003

  17. Zhang J, Yang Y, Cao S et al (2020) Fine equiaxed β grains and superior tensile property in Ti–6Al–4V alloy deposited by coaxial electron beam wire feeding additive manufacturing. Acta Metall Sin (English Lett 33). https://doi.org/10.1007/s40195-020-01073-5

  18. Wanjara P, Gholipour J, Watanabe E et al (2020) High frequency vibration fatigue behavior of Ti6Al4V fabricated by wire-fed electron beam additive manufacturing technology. Adv Mater Sci Eng. https://doi.org/10.1155/2020/1902567

  19. Wanjara P, Watanabe K, De Formanoir C et al (2019) Titanium alloy repair with wire-feed electron beam additive manufacturing technology. Adv Mater Sci Eng. https://doi.org/10.1155/2019/3979471

  20. Cunningham CR, Flynn JM, Shokrani A et al (2018) Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf 22

  21. Xu T, Tang S, Liu C et al (2020) Obtaining large-size pyramidal lattice cell structures by pulse wire arc additive manufacturing. Mater Des 187. https://doi.org/10.1016/j.matdes.2019.108401

  22. Rodrigues TA, Duarte VR, Tomás D et al (2020) In-situ strengthening of a high strength low alloy steel during Wire and Arc Additive Manufacturing (WAAM). Addit Manuf 34. https://doi.org/10.1016/j.addma.2020.101200

  23. Wang J, Lin X, Wang J et al (2018) Grain morphology evolution and texture characterization of wire and arc additive manufactured Ti-6Al-4V. J Alloys Compd 768. https://doi.org/10.1016/j.jallcom.2018.07.235

  24. Aschenbruck J, Adamczuk R, Seume JR (2014) Recent progress in turbine blade and compressor blisk regeneration. Procedia CIRP. https://doi.org/10.1016/j.procir.2014.07.016

    Article  Google Scholar 

  25. Zhuo Y, Yang C, Fan C et al (2020) Microstructure and mechanical properties of wire arc additive repairing Ti–6.5Al–2Sn–2Zr–4Mo–4Cr titanium alloy. Mater Sci Technol (United Kingdom) 36. https://doi.org/10.1080/02670836.2020.1822061

  26. Zhuo Y, Yang C, Fan C et al (2021) Grain refinement of wire arc additive manufactured titanium alloy by the combined method of boron addition and low frequency pulse arc. Mater Sci Eng A 805. https://doi.org/10.1016/j.msea.2020.140557

  27. Shan XY, Tan MJ, O’Dowd NP (2007) Developing a realistic FE analysis method for the welding of a NET single-bead-on-plate test specimen. J Mater Process Technol 192–193. https://doi.org/10.1016/j.jmatprotec.2007.04.080

  28. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15. https://doi.org/10.1007/BF02667333

  29. Ding J, Colegrove P, Mehnen J et al (2011) Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci 50. https://doi.org/10.1016/j.commatsci.2011.06.023

  30. Galarraga H, Lados DA, Dehoff RR et al (2016) Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Addit Manuf 10. https://doi.org/10.1016/j.addma.2016.02.003

  31. Bambach M, Sizova I, Sydow B et al (2020) Hybrid manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing. J Mater Process Technol 282. https://doi.org/10.1016/j.jmatprotec.2020.116689

  32. Zhou Y, Qin G, Li L et al (2020) Formability, microstructure and mechanical properties of Ti-6Al-4V deposited by wire and arc additive manufacturing with different deposition paths. Mater Sci Eng A 772. https://doi.org/10.1016/j.msea.2019.138654

  33. Liu Q, Wang Y, Zheng H et al (2016) TC17 titanium alloy laser melting deposition repair process and properties. Opt Laser Technol 82. https://doi.org/10.1016/j.optlastec.2016.02.013

Download references

Funding

This work was supported by the National Science and Technology Major Project of China (Grant 2019-VII-0004-0144).

Author information

Authors and Affiliations

Authors

Contributions

Yimin Zhuo: experiment, methodology, writing — original draft preparation. Chunli Yang: supervision, validation. Chenglei Fan: writing — reviewing, investigation, data curation. Sanbao Lin: writing — reviewing, validation.

Corresponding author

Correspondence to Chenglei Fan.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, Y., Yang, C., Fan, C. et al. Effects of thermal undercooling and thermal cycles on the grain and microstructure evolution of TC17 titanium alloy repaired by wire arc additive manufacturing. Int J Adv Manuf Technol 124, 3161–3169 (2023). https://doi.org/10.1007/s00170-021-08445-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08445-w

Keywords

Navigation