Skip to main content

Advertisement

Log in

Challenges in Qualifying Additive Manufacturing for Turbine Components: A Review

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Gas turbine engine advancements have been enabled by innovation in materials and manufacturing technologies. The evolution of additive manufacturing (AM) has changed the face of direct digital technologies for the rapid production of models, prototypes, and functional parts including repair and maintenance for turbine engines. Metal 3D printing is poised to be an enabler for the next industrial revolution in enabling advancements in turbine engine performance. While there has been tremendous efforts on research and development in utilizing this versatile technology, the number of qualified metallic parts that are running in the engine has not been commensurate with the applied research and development efforts and the benefits that the AM technology offers. This review addresses some of the key technical issues that are currently limiting the prolific usage of AM as a successful vehicle for accelerated progress in gas turbine engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

copyright 2018 by The Minerals, Metals & Materials Society and ASM International. [Used with permission].

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schafrik R, and Sprague R, Adv. Mater. Proc. 162 (2004).

  2. Roger C R, The Superalloys: Fundamentals and Applications, Cambridge University Press (2006).

  3. Pollock T, and Tin S, J Prop Power 22 (2006) 361.

    Article  CAS  Google Scholar 

  4. Huron E S, Bain K R, Mourer D P, and Gabb T, Superalloys (2008) 181.

  5. Dutta B, Babu S, and Jared B, Science, Technology and Applications of Metals in Additive Manufacturing, Elsevier (2019).

  6. Wimpenny D I, Pandey P M, and Kumar L J, Advances in 3D Printing and Additive Manufacturing Technologies. Springer US, (2017).

    Book  Google Scholar 

  7. Milewski J O, Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry, Springer, (2017).

  8. Gibson I, Rosen D W, and Stucker B, Development of Additive Manufacturing Technology, Springer, (2015).

  9. Simpson J, Haley J, Cramer C, Shafer O, Elliot A, and William P, ORNL/TM-2019/1190 M3CT-19OR06090123, (2019).

  10. Frazier W E, J. Mater. Eng. Perform, 23 (2014) 1917.

    Article  CAS  Google Scholar 

  11. Gao W, Zhang Y, Ramanujana D, Ramani K, Chenc Y, Williams C B , Wang C C L, Shina Y C, Zhang S, and Zavattieri P D, Computer-Aided Design 69 (2015) 65.

  12. Herzog D, Seyda V, Wycisk E, and Emmelmann C, Acta Mater. 117 (2016) 371.

    Article  CAS  Google Scholar 

  13. Ngo T D, Kashani A, Imbalzano G, Nguyun T U, and Hui D, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges 143 (2018) 172.

  14. Gebisa A W, and Lemu H G, Proc. ASME Turbo Expo 2018, 1.

  15. www.intechopen.com/books

  16. http://www2.deloitte.com

  17. http://www.hindawi.com

  18. researchgate.net/publication/327326826_

  19. https://www.additive-manufacturing-for-the-aircraft-industry-a-review

  20. Additive Manufacturing: Building the Future” http://www.energy.gov/s

  21. Additive Manufacturing for Repair and Restoration in Remanufacturing: http://www.mdpi.com

  22. Opportunities, Challenges, and Policy Implications of Additive Manufacturing” https://www.gao.gov

  23. Lange A, Lange J, and Schulze U, MTU Aero Engines Gmbh, U.S. Patent 7,810,237, 2010.

  24. McBrien J, Castle L K, and Spangler B W, U.S. Patent Application 15/211,913, 2016.

  25. Islam M U, Xue, L, and McGregor G, National Research Council of Canada, U.S. Patent 6,269,540, 2001.

  26. Metal Powder Report, 69 (2014), 36–37.

  27. Wilson J. M, Cecil P, Yung S, and Fu Z, J. Cleaner Prod. 80 (2014) 170.

    Article  Google Scholar 

  28. Yilmaz O, Gindy N, and Gao J, Robot Comp. Int. Mfg. 26 (2010) 190.

    Article  Google Scholar 

  29. Petrat T, Graf Bm Gumenyuk A, and Rethnmeier M, Phy. Procedia 83 (2016) 761.

    Article  CAS  Google Scholar 

  30. http://www.compositesworld.com

  31. http://www.ge.com/news

  32. https://www.aerospacemanufacturinganddesign.com/article/pratt-whitney-additive-parts-engine-040615/

  33. 3dprintingindustry.com/news/gkn-aerospace

  34. cordis.europa.eu/result/rcn/171976_en.html

  35. http://www.rolls-royce.com

  36. boeing.mediaroom.com

  37. http://www.reuters.com/article/us-norsk-boeing

  38. http://www.boeing.com

  39. MTU : http://www.longdom.org

  40. http://www.longdom.org/open-access

  41. https://aeroreport.de/en/innovation/additive-manufacturing-in-engine-production

  42. Kok Y, Tan X P, Wang P, Nai M L S, Loh N H, Liu E, and Tor S B, Mater Des. 139 (2018) 565.

    Article  CAS  Google Scholar 

  43. Kulkarni A, Applied Physics, May 2018.

  44. Karia M C, Popat M A, and Sangani K B, AIP Proc. (2017) 1859.

  45. ASTM, Standard Terminology for Additive Manufacturing Technologies, ASTM, F2792–12a.

  46. senvol.com/database

  47. Meltio M450: http://www.aniwaa.com/product/3d-printers/meltio-m450/

  48. tadadenki.jp/english/welding_machines/metal_3d_printer

  49. exaddon.com/

  50. matsuurausa.com/model/lumex-avance

  51. thermwood.com/lsam_home

  52. ge.com/additive

  53. http://www.digitalmetal.tech/printer-line/design-and-function

  54. slm-solutions.com/products-and-solutions/machines/slm-500

  55. https://spee3d.com/product/lightspee3d/

  56. dmgmori.com

  57. DM3D http://www.pomgroup.com

  58. “Anisoprint COMPOSER” https://3dprinting.com/products/industrial-3d-printer/anisoprint-composer-a4/

  59. https://www.metal-am.com/mazak-partners-with-ornl-on-wire-based-additive-manufacturing-rd/

  60. “Farsoon Technologies FS621M” https://www.metal-am.com/farsoon-introduces-large-frame-metal-additive-manufacturing-machine/

  61. https://www.essentium.com/high-speed-extrusion/

  62. “Wayland Additive NeuBeam process” https://www.3dprintingmedia.network/wayland-additive-calibur-3-neubeam-launch-date/

  63. “Graz University SLEDM” https://3dprintingindustry.com/news/tu-graz-engineers-create-metal-3d-printer-that-uses-led-instead-of-lasers-or-electron-beams-171609/

  64. https://www.beam-machines.com/

  65. https://www.rrcat.gov.in/technology/laser

  66. Sandvik, Osprey” http://www.metalpowder.sandvik

  67. “Carpenter – LPW” http://www.carpenteradditive.com

  68. “Oerlikon” mymetco.oerlikon.com

  69. “Tosoh” http://www.tosohsmd.com

  70. “Praxair” https://www.praxairsurfacetechnologies.com

  71. “Indo MIM” http://www.indo-mim.com

  72. “Hoganas” http://www.hoganas.com

  73. “Ametek” http://www.powderclad.com

  74. MIMETEhttp://www.mimete.com

  75. “Aubery and Duval” http://www.eramet.com/en/aubert-duval

  76. “H. C. Starck” http://www.hcstarcksolutions.com/additive-manufacturing/

  77. “Valimet” valimet.com/our-products/am-grades/

  78. “Heraeus” http://www.heraeus.com

  79. AP & C” http://www.advancedpowders.com

  80. “6K” http://www.6kinc.com

  81. Bawane K K, Srinivasan D, and Banerjee D, Meta Mater Tran A 49 (2018) 3793.

    Article  CAS  Google Scholar 

  82. Sames W J, List F A, Pannala S, Dehoff R R, and Babu S S, Int. Mater. Rev. 61 (2016) 315. .

    Article  Google Scholar 

  83. Sames W J, Medina F, Peter W H, Babu S S, and Dehoff R R, 8th Int. Symp. Superalloy 718 Deriv. (2014) 409.

  84. Qi H, Azer M, and Ritter, Metall. Mater. Trans. 40 (2009) 2410.

  85. Zhao X, Chen J, Lin X, and Huang W, Mater. Sci. Eng. A 478 (2008) 119.

    Article  Google Scholar 

  86. Hassel T, and Carstensen T, Weld. World 64 (2020) 1921.

    Article  CAS  Google Scholar 

  87. Chandrasekara S K R D, Reddy S A, Srinivasan D, and Ananthanarayanan D, Proc. ASME Gas Turbine India (2017).

  88. Hilal H, Lancaster R J, Jeffs S P, Ednie L, Boswell J, Stapleton D, and Baxter G, Ubiquity Proc. 1 (2018) 21.

    Article  Google Scholar 

  89. Hartunian P, and Eshraghi M, J. Manuf. Mater. Process. 2 (2018) 69.

    CAS  Google Scholar 

  90. Sadek A, Ritter G, Drews C, and Ryan D, DE-FE0023974 (2017).

  91. Carter L N, Martin C, Withers P J, and Attallah M M, J. Alloys Compd 615 (2014) 338.

    Article  CAS  Google Scholar 

  92. Jeffs S, Lancaster R, and Davies S, Key Engg. Mater 734 (2017) 128.

    Article  Google Scholar 

  93. Moussaoui K, Rubio W, Mousseigne M, and Sultan T, Mater Sci Engg. A 735 (2019) 182.

  94. Calignano F, and Minetola P, Mater, 12 (2019) 3178.

    Article  CAS  Google Scholar 

  95. Kasperovich G, Haubrich J, Gussone J, and Requena G, Mater Des. 105 (2016) 160.

    Article  CAS  Google Scholar 

  96. Tian Z, Zhang C, Wang D, Liu W, Fang X, Wellmann D, Zhao Y, and Tian Y, Appl. Sci. 10 (2019) 81.

    Article  Google Scholar 

  97. Perevoshchikova N, Rigaud J, Sha Y, Heilmaier M, Finnin B, et al. Rapid Proto. Journal, Emerald 23 (2017) 881.

    Google Scholar 

  98. Harrison, Neil J, Univ. of Sheffield (2016).

  99. Srinivasan D, Singh A, Reddy A S, and Chatterjee K, Mater Tech, Oct (2020).

  100. Srinivas, P, Srinivasan D, Dutta B, and Banerjee D, Unpublished work, Eurosuperalloys 2018.

  101. Harrison N J, Todd I, and Mumtaz K, Acta Mater, 94 (2015) 59.

    Article  CAS  Google Scholar 

  102. Carter L N, Essa K, and Attallah M M, Rapid Prototyping Journal 21 (2015) 1.

    Article  Google Scholar 

  103. Dutta B, and Froes F, The AMMTIAC Quarterly 6 (2011) 5.

    Google Scholar 

  104. Dinda G P, Dasgupta A K, and Mazumder J, Scripta Mater 67 (2012) 503.

    Article  CAS  Google Scholar 

  105. Dinda G P, Dasgupta A K, and Mazumder J, Mat Sci Engg. A 509 (2009) 98.

  106. Sames W J, Unocic K A, Dehoff R R, Lolla T, and Babu S S, J. Mater. Res. 29 (2014) 1920. .

    Article  CAS  Google Scholar 

  107. Wei H L, Mazumder J, and DebbRoy T, Nature Sci reports 5 (2015) 16446.

    CAS  Google Scholar 

  108. Martin J H, Yahata B D, Hundley J M, and Mayer J A, Nature, 549 (2017) 365.

    Article  CAS  Google Scholar 

  109. Tana Q , Zhang J, Suna Q, Fana Z, Li G, Yina Y, Liua Y, and Zhang M X, Acta Mater. (2020).

  110. Smith T M, Thompson A C, Gabb T P, Bowman C L, and Kantzos C A, Nature Research Scientific Reports (2020).

  111. Yanyan Z, Xiangjun T, Jia L, and Huaming W, Mater Des 67 (2015) 538.

    Article  Google Scholar 

  112. Awd M, Stern F, Kampmann A, Kotzem D, Tenkamp J, and Walther F, Metals 8 (2018) 825.

    Article  CAS  Google Scholar 

  113. Wilson-Heid A E, Wang Z, McCornac B, and Beese A M, Mater Sci Eng A 706 (2017) 287.

    Article  CAS  Google Scholar 

  114. Carroll B E, Palmer T A, and Beese A M, Acta Mater\ 87 (2015) 309.

    Article  CAS  Google Scholar 

  115. Deng D, PhD Thesis, Linköping Univ. (2019).

  116. Amato K N, Gaytan S M, Murr L E, Martinez Em Shindo P Wm Hernandez J, Collins S, and Medina F, Acta Mater., 60 (2012) 2229.

  117. Karlsson J, Snis A, Engqvist H, and Lausmaa J, J. Mater. Process. Technol. 213 (2013) 2109.

    Article  CAS  Google Scholar 

  118. Leuders S, Thone N, Riemer A, Niendorf T, Troster T, Richard H A, and Maier H J, Int. J. Fatigue 48 (2013) 300

    Article  CAS  Google Scholar 

  119. Xu W, Brandt M, Sun S, Elambasseril J, Liu Q, Latham K, Xia K, and Qian M, Acta Mater. 85 (2015) 74.

    Article  CAS  Google Scholar 

  120. Murr L E, Martinez E, Amato K N, Gaytan S M, Hernandez J, Ramirez D A, Shindo P W, Medina F, and Wicker R B, J. Mater. Sci. Res. 1 (2012) 3.

    Google Scholar 

  121. Deffley R J, PhD Thesis, Univ. of Sheffield, 2018.

  122. Parimi L L, Ravi G A, Clark D, and Attallah M M, Mater Charac. 89 (2014) 102.

    Article  CAS  Google Scholar 

  123. Pinkerton A J, Karadge M, Syed W U H, and Li L, J Laser Appl 18 (2006) 216.

    Article  CAS  Google Scholar 

  124. Brenne F, Taube A, Pröbstle M, Neumeier S, Schwarze D, Schaper M, and Niendorf T, Prog in Additive Mfg 1 (2016) 141.

    Article  Google Scholar 

  125. Mathias S, Srinivasan D, Jayaprakash S, Ahmed S, and Banerjee D, Submitted to Trans. INAE.

  126. Kuo Y L, Nagahari T, and Kakehi K, Maters 11 (2018) 996.

    Article  Google Scholar 

  127. Zhang F, Levine L E, Allen A J, Stoudt M R, Lindwall G, Lass E A, Williams M E, Idell Y, and Campbell C E, Acta Mater. 2018; 152.

  128. Anam Md Ashabul, PhD Thesis, Univ. of Louisville (2018).

  129. Carter L N, Ph D Thesis, Univ. of Birmingham (2013).

  130. Zhang B, Meng W J, Shao S, Phan N and Shamsaei N, Mat Des Process Comm. (2019).

  131. Benzing J, Hrabe N, Quinn T, White R, Rentz R and Ahlfors M, Mater Letters 257 (2019).

  132. Qi H, Azer M, and Ritter A, Metall. Mater. Trans. A 40 (2009) 2410.

    Article  Google Scholar 

  133. Wu A, LeBlanc M M, Kumar M, Gallegos G F, Brown D W, and King W E, TMS annual meeting exhibition (2014).

  134. DebRoy T, Wei H L, Zuback J S, Elmer J W, Milewski J O, Besse A M, Heid A W, De A, and Zhang W, Prog. Mater. Sci. 92 (2018) 112.

    Article  CAS  Google Scholar 

  135. 135. Helmer H E, Körner C, and Singer R F, J. Mater. Res. 29 (2014) 1987.

    Article  CAS  Google Scholar 

  136. Elmer J W, Vaja J, Carlton H D, and Pong R, Weld. J. 94 (2015) 313.

    Google Scholar 

  137. Seifi M, Salem A A, Satko D P, Grylls R, and Lewandowski J J, Proc. 9th Int. Symp. Superalloy 718 & Deriv. (2018) 515.

  138. Seifi M, Salem A A, Satko D P, Ackelid U, Semiatin S L, and Lewandowski J J, J Alloys Compd 729 (2017) 1118.

    Article  CAS  Google Scholar 

  139. Maroti P, Varga P, Abraham H, Falk G, Zsebe T, Meiszterics Z, Mano S, Csernatony Z, Rendeki S, and Nyitrai M, Mater Res Express 6 (2019) 035403.

    Article  Google Scholar 

  140. Nia M, Chena C, Wangb X, W P, Lia R, Zhanga X, and Zhoua K, Mater Sci Eng A 701 (2017) 344.

  141. Tian Z, Zhang C, Wang D, Liu W, Fang X, Wellmann D, Zhao Y, and Tian Y, Appl Sci, 10 (2020) 81.

    Article  CAS  Google Scholar 

  142. Kunze K, Etter T, Grässlin J, and Shklover V, Mater Sci Eng A, 620 (2014) 213.

    Article  CAS  Google Scholar 

  143. Etter T, Kunzer K, Geiger F, and Meidani H, IOP Conf. Series: Mater Sci Eng A 82 (2015) 012097.

  144. Liu S, and Shin Y C, Mater Des. 164 (2019) 107552.

    Article  CAS  Google Scholar 

  145. Wang P, Nai M L S, Tan X, Sin W Jk, Tor S B, and Wei J, Proc. TMS2016.

  146. Saboori A, Gallo D, Biamino S, Fino P, and Lombardi M, Appl Sci. 7 (2017) 883.

    Article  Google Scholar 

  147. Carroll B E, Palmer T A, and Beese A M, Sci Dir Acta Mater 87 (2015) 309.

    Article  CAS  Google Scholar 

  148. Antonysamy A A, PhD Thesis, Univ. of Manchester (2012).

  149. Tomus D, Tian T, Rometsch P A, Heilmaier M, and Wu X, Mater Sci. Engg. A 667 (2016) 42.

    Article  CAS  Google Scholar 

  150. Kunze K, Etter T, Grasslin J, and Shkloyer V, Mat. Sci. Engg. A 620 (2015) 213.

    Article  Google Scholar 

  151. Divya V.D., Munroz-Moreno R, Messe O M D M, Barnard J S, Baker S, Illston T, and Stone H, J Mater Charac. 114 (2016) 62.

    Article  CAS  Google Scholar 

  152. Helmer H E, Korner C, and Singer R F, J. Mater. Res. 29 (2014) 1987.

    Article  CAS  Google Scholar 

  153. Korner C, Ramsperger M, Meid C, Burger D, Wollgramm P, Bartsch M, and Eggeler G, Metall. Met Trans A 49 (2018) 3792.

    Google Scholar 

  154. Geiger F, Kunze K, and Etter T, Mater Sci Engg. A 661 (2016) 240.

    Article  CAS  Google Scholar 

  155. Muñoz-Moreno R, Divya D, Driver S L, Messe O M D, Illston T, Baker S, Carpenter M A, and Stone H J, Mater Sci Engg A 674 (2016) 529.

    Google Scholar 

  156. Sames W J, Unocic K A, Dehoff R R, Lolla Tapasvi, and Babu S S, J. Mater. Res. 29 (2014) 1920.

    Article  CAS  Google Scholar 

  157. Howard C B, PhD Thesis, Univ. California, Berkeley (2018).

  158. Haghshenas M, Totuk O, Masoomi M, Thompson S M, and Shamsaei N, Proc.Solid Freeform Fabrication 2017.

  159. Benson LL, Marshall L A Benson, Weston N S, Mellor I, and Jackson M, Metall. Mater. Trans A 48 (2017) 5228.

  160. Muhammad M, BS. Thesis, Univ. North Dakota (2018).

  161. Alghamdi1 F, Verma D and Haghshenas M, Proc. Solid Freeform Fabrication 2017.

  162. Aboulkhair N T, Simonelli M, Parry L, Ashcroft I, Tuck C, and Hague R, Prog. in Mater Sci 106 (2019) 100578.

    Article  CAS  Google Scholar 

  163. Reddy A S, and Srinivasan D, Proceedia Struct Integrity 14 (2019) 449.

    Article  Google Scholar 

  164. Junk S, Klerch B, Nasdala L, and Hochberg U, 28th CIRP Des. Conf., May 2018, Nantes, France.

  165. Orme M, Madera I, Gschweitl M, and Ferrari M, Designs 2 (2018) 51.

    Article  Google Scholar 

  166. Allaire G, Dapogny C, Estevez R, Faure A and Michailidis G, J. Comput. Phys. 351 (2017) 295.

    Article  Google Scholar 

  167. Hällgrena S, Pejryd L, and Ekengren J, Procedia CIRP 50 (2016 ) 518.

    Article  Google Scholar 

  168. Decker N, and Huang Q, Proc. ASME 2019 14th Int. Mfg. Sci.Engg. Conf. (2019).

  169. Speranza D, Citro D, Padula F, Moty B, Marcolin F, Calì M, and Martorelli M, Appl. Bionics and Biomechanics, 2017, Article ID 9701762.

  170. Klar V, Pere J, Turpeinen T, Kärki P, Orelma H, and Kuosmanen P, Sci. Rep. 9 (2019) 3822.

    Article  Google Scholar 

  171. Jiménez M, Romero L, Dom-nguez I A, Espinosa M D M, and Dom-nguez M, Hindawi Complexity, 2019, Article ID 9656938.

  172. Stimpson C, Snyder J, and Thole K A, J Turbo 138 (2016) 051008.

    Article  Google Scholar 

  173. Snyder J, and Thole K A, J Turbo 142 (2020) 051007.

    Article  Google Scholar 

  174. Klein E, Ling J, Aute V C, Hwang Y, and Radermacher R, Proc.17th Int Ref. and Air Cond. Conf. (2018).

  175. Ghani S A C, Zakaria1 M H, Harun W S W, and Zaulkafilai Z, MATEC Web of Conferences 90 (2017).

  176. Tan C, Wang D, Ma W, Chen Y, Chen S, Yang Y, and Zhou K, Mater Des 196 (2020) 109147.

    Article  Google Scholar 

  177. Snyder J C, PhD Thesis, The Pennsylvania State Univ. (2019).

  178. Li C, Liu Z Y, Fang X Y, and Guo Y B, Procedia CIRP 71 (2018) 348.

    Article  Google Scholar 

  179. Mukherjee T, Zhang W, and DebRoy T, Compu Mater Sci 126 (2017) 360.

    Article  CAS  Google Scholar 

  180. Ali H, Ghadbeigi H, and Mumtaz K, J Mater Engg Perf 27 (2018) 4059.

    Article  CAS  Google Scholar 

  181. Pant P, PhD Thesis, Linköping Univ. Sweden (2020).

  182. Chimmat M and Srinivasan D, Procedia Struct Integrity 14 (2019) 746.

    Article  Google Scholar 

  183. Sundaram H, Srinivasan D, and Baummer J, Proc. of the ASME (2019).

  184. Mercelis P, and Kruth J P, Rapid Prototyping Journal 12 (2006) 254.

    Article  Google Scholar 

  185. Everton SK, Hirsch M, Stavroulakis P I, Leach R K, and Clare A T, Mater. Des. 95 (2016) 431.

    Article  CAS  Google Scholar 

  186. Tapia G, and Elwany A, J. Manuf. Sci. Eng. 136 2014.

  187. Berumen S, Bechmann F, Lindner S, Kruth J P, and Craeghs T, Phys. Procedia 5 (2010) 617.

    Article  Google Scholar 

  188. Mani M, Lane B M, Donmez M A, Feng S C, and Moylan S P, Int. J. Prod. Res. 55 (2017) 1400.

    Article  Google Scholar 

  189. Koester L W, Taheri H, Bigelow T A, Collins P C, and Bond L J, Mater. Eval. 76 (2018) 386.

    Google Scholar 

  190. DunbarA J, Denlinger E R, Heigel J, Michaleris P, Guerrier P, Martukanitz R, and Simpson T W, Addit. Manuf. 12 (2016) 25.

  191. Mazumder J, Procedia CIRP 36 (2015 ) 187.

    Article  Google Scholar 

  192. Salehi D, and Brandt M, Int. J. Adv. Manuf. Technol. 29 (2006) 273.

    Article  Google Scholar 

  193. Davis T A, and Shin Y C, Mach. Vis. Appl. 22 (2011) 129.

    Article  Google Scholar 

  194. Rodriguez E, Mireles J, Terrazas C A, Espalin D, Perez M A, and Wicker R W, Addit. Manuf. 5 (2015) 3.

    Google Scholar 

  195. Bi G, Sun C N, and Gasser A, J. Mater. Process. Technol. 213 (2013) 463.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dayananda Narayana, Pratt & Whitney R&D Center, Bangalore, for several discussions and help with the references and Jesse Boyer, Pratt & Whitney, East Hartford, for reviewing the article and providing valuable inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheepa Srinivasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, D. Challenges in Qualifying Additive Manufacturing for Turbine Components: A Review. Trans Indian Inst Met 74, 1107–1128 (2021). https://doi.org/10.1007/s12666-021-02199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02199-5

Keywords

Navigation