Skip to main content
Log in

Tool path planning for five-axis U-pass milling of an impeller

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

U-pass milling is a roughing method that combines the characteristics of flank milling with conventional trochoidal milling. The tool cuts in and out steadily, and the tool–workpiece wrap angle is maintained within a small range. This method can smooth the cutting force and reduce the peak cutting force while avoiding cutting heat accumulation, which can significantly improve the processing efficiency and reduce tool wear. In this study, a tool path model is established for U-pass milling, and the characteristic parameters of the path are defined. Through a comparative test of three-axis groove milling, it is demonstrated that the peak value and average value of the cutting force are reduced by 25% and 60%, respectively. An impeller runner is considered as the processing object, and the milling boundary parameters are pretreated. A tiling micro-arc mapping algorithm is proposed, which maps the three-dimensional boundary to the two-dimensional parameter domain plane with the arc length as the coordinate axis, and the dimensionally reduced tool contact point distribution form is obtained. The geometric domain tool position point and the interference-free tool axis vector are obtained by calculating the bidirectional proportional domain of the runner and the inverse mapping of any vector in the parameter domain. Finally, the calculation results are nested into the automatically programmed tool (APT) encoding form, and the feasibility of the five-axis U-pass milling tool path planning method is verified through a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Fan HZ, Xi G, Wang W, Cao YL (2016) An efficient five-axis machining method of centrifugal impeller based on regional milling. Int J Adv Manuf Technol 87(1-4):789–799. https://doi.org/10.1007/s00170-016-8467-x

    Article  Google Scholar 

  2. Chu CH, Huang WN, Li YW (2012) An integrated framework of tool path planning in 5-axis machining of centrifugal impeller with split blades. J Intell Manuf 23(3):687–698. https://doi.org/10.1007/s10845-010-0419-y

    Article  Google Scholar 

  3. Lee YS, Koc B (1998) Ellipse-offset approach and inclined zig-zag method for multi-axis roughing of ruled surface pockets. Comput Aided Des 30(12):957–971. https://doi.org/10.1016/S0010-4485(98)00051-7

    Article  MATH  Google Scholar 

  4. Alberro AN, Rojas HG, Egea AS, Hameed S, Aguilar RP (2019) Model Based on an Effective Material-Removal Rate to Evaluate Specific Energy Consumption in Grinding. Materials 12(6):939. https://doi.org/10.3390/ma12060939

    Article  Google Scholar 

  5. Heo EY, Kim DW, Kim BH, Jang DK, Chen FF (2008) Efficient rough-cut plan for machining an impeller with a 5-axis NC machine. Int J Comput Integr Manuf 21(8):971–983. https://doi.org/10.1080/09511920802010761

    Article  Google Scholar 

  6. Elber G, Cohen E (1994) Tool path generation for freeform surface models. Comput Aided Des 26(6):490–496. https://doi.org/10.1145/164360.164500

    Article  MATH  Google Scholar 

  7. Kim BH, Choi BK (2000) Guide surface based tool path generation in 3-axis milling: an extension of the guide plane method. Comput Aided Des 32(3):191–199. https://doi.org/10.1016/S0010-4485(99)00086-X

    Article  Google Scholar 

  8. Lee SG, Kim HC, Yang MY (2008) Mesh-based tool path generation for constant scallop-height machining. Int J Adv Manuf Technol 37(1-2):15–22. https://doi.org/10.1007/s00170-007-0943-x

    Article  Google Scholar 

  9. Huang N, Krebs E, Baumann J, Zhou Y, Biermann D (2020) Experimental investigation on influence of engagement angle and tool geometry on plunge milling. Int J Adv Manuf Technol 108(1-4):1973–1981. https://doi.org/10.1007/s00170-020-05480-x

    Article  Google Scholar 

  10. Montassar F, Frédéric M, Johanna S, Walter R (2021) Cutting parameters and tool geometry selection for plunge milling - Analysis of cutting forces at the bottom of deep titanium workpieces. J Manuf Process 62:491–500. https://doi.org/10.1016/J.JMAPRO.2020.12.033

    Article  Google Scholar 

  11. Gao HN, Shen HD, Liu XL, Li RY (2020) Mechanics and dynamics research considering the tool radial runout effect in plunge milling. Int J Adv Manuf Technol 106(9–12):2391–2402. https://doi.org/10.1007/s00170-019-04780-1

    Article  Google Scholar 

  12. Wakaoka S, Yamane Y, Sekiya K, Narutaki N (2002) High-speed and high-accuracy plunge cutting for vertical walls. J Mater Process Technol 127(2):246–250. https://doi.org/10.1016/S0924-0136(02)00151-6

    Article  Google Scholar 

  13. Cafieri S, Monies F, Mongeau M, Bes C (2016) Plunge milling time optimization via mixed-integer nonlinear programming. Comput Ind Eng 98(8):434–445. https://doi.org/10.1016/j.cie.2016.06.015

    Article  Google Scholar 

  14. Danis I, Wojtowicz N, Monies F, Lamesle P, Lagarrigue P (2013) Cutting Conditions and Surface Integrity During Dry Plunge-milling of a Wrought Magnesium Alloy. Procedia Eng 63(1):36–44. https://doi.org/10.1016/j.proeng.2013.08.213

    Article  Google Scholar 

  15. Rauch M, Hascoet JY (2012) Selecting a milling strategy with regard to the machine tool capabilities: application to plunge milling. Int J Adv Manuf Technol 59(1-4):47–54. https://doi.org/10.1007/s00170-011-3498-9

    Article  Google Scholar 

  16. Chu CH, Chen HY, Chang CH (2020) Continuity-preserving tool path generation for minimizing machining errors in five-axis CNC flank milling of ruled surfaces. J Manuf Syst 55:171–178. https://doi.org/10.1016/j.jmsy.2020.03.004

    Article  Google Scholar 

  17. Chu CH, Wu PH, Lei W (2012) Tool path planning for 5-axis flank milling of ruled surfaces considering CNC linear interpolation. J Intell Manuf 23(3):471–480. https://doi.org/10.1007/s10845-010-0386-3

    Article  Google Scholar 

  18. Lu YA, Wang CY (2020) Smoothing method of generating flank milling tool paths for five-axis flat-end machining considering constraints. Int J Adv Manuf Technol 110(11-12):3295–3309. https://doi.org/10.1007/s00170-020-05880-z

    Article  Google Scholar 

  19. Lu YA, Wang CY, Zhou L (2019) Geometric deviation evaluation for a five-axis flank milling tool path using the tool swept envelope. Int J Adv Manuf Technol 105(10):1811–1821. https://doi.org/10.1007/s00170-019-04397-4

    Article  Google Scholar 

  20. Chaves-Jacob J, Poulachon G, Duc E (2012) Optimal strategy for finishing impeller blades using 5-axis machining. Int J Adv Manuf Technol 58(5):573–583. https://doi.org/10.1007/s00170-011-3424-1

    Article  Google Scholar 

  21. Elber G, Cohen E, Drake S (2004) MATHSM: medial axis transform toward high speed machining of pockets. Comput Aided Des 37(2):241–250. https://doi.org/10.1016/j.cad.2004.05.008

    Article  Google Scholar 

  22. Rauch M, Duc E, Hascoet JY (2008) Improving trochoidal tool paths generation and implementation using process constraints modelling. Int J Mach Tools Manuf 49(5):375–383. https://doi.org/10.1016/j.ijmachtools.2008.12.006

    Article  Google Scholar 

  23. Ibaraki S, Yamaji I, Matsubara A (2010) On the removal of critical cutting regions by trochoidal grooving. Precis Eng 34(3):467–473. https://doi.org/10.1016/j.precisioneng.2010.01.007

    Article  Google Scholar 

  24. Santhakumar J, Iqbal UM (2019) Role of trochoidal machining process parameter and chip morphology studies during end milling of AISI D3 steel. J Intell Manuf 32(3):649–665. https://doi.org/10.1007/S10845-019-01517-5

    Article  Google Scholar 

  25. Niaki FA, Pleta A, Mears L (2018) Trochoidal milling: investigation of a new approach on uncut chip thickness modeling and cutting force simulation in an alternative path planning strategy. Int J Adv Manuf Technol 97(1):641–656. https://doi.org/10.1007/s00170-018-1967-0

    Article  Google Scholar 

  26. Ajgalík M, Kunerová M, Harniárová M, Valíek J, Kmec J (2020) Analysis and Prediction of the Machining Force Depending on the Parameters of Trochoidal Milling of Hardened Steel. Appl Sci 10(5):1788. https://doi.org/10.3390/app10051788

    Article  Google Scholar 

  27. Luo M, Hah C, Hafeez HH (2019) Four-axis trochoidal toolpath planning for rough milling of aero-engine blisks. Chin J Aeronaut 32(8):217–224. https://doi.org/10.1016/j.cja.2018.09.001

    Article  Google Scholar 

  28. Pleta A, Niaki FA, Mears L (2017) Investigation of Chip Thickness and Force Modelling of Trochoidal Milling. Procedia Manuf 10:612–621. https://doi.org/10.1016/j.promfg.2017.07.063

    Article  Google Scholar 

  29. Waszczuk K, Karolczak P, Wisniewska M, Kowalski M (2017) Influence of the path type on selected technological effects in the trochoidal milling. Adv Sci Technol Res J 11(1):147–153. https://doi.org/10.12913/22998624/66501

    Article  Google Scholar 

  30. Oh NS, Woo WS, Lee CM (2018) A study on the machining characteristics and energy efficiency of Ti-6Al-4V in laser-assisted trochoidal milling. Int J Precis Eng Manuf-Green Technol 5(1):37–45. https://doi.org/10.1007/s40684-018-0004-y

    Article  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Funds of China (Grant No. U1908231), the National Natural Science Funds of China (Grant No. 52075076), and the National Natural Science Funds of China (Grant No. 52005078).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the writing, read, and approved the final manuscript.

Corresponding author

Correspondence to Zhaocheng Wei.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Wei, Z., Wang, M. et al. Tool path planning for five-axis U-pass milling of an impeller. Int J Adv Manuf Technol 117, 3379–3391 (2021). https://doi.org/10.1007/s00170-021-07947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07947-x

Keywords

Navigation