Skip to main content
Log in

Stability analysis in turning with variable spindle speed based on the reconstructed semi-discretization method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Chatter is a harmful phenomenon in metal cutting process. The turning process with variable spindle speed is an effective means for chatter suppression. In this paper, the reconstructed semi-discretization method (RSDM) is used to analyze the stability in turning process with variable spindle speed which is constructed as the dynamic model of delay differential equations with varying delay term (VDDE). Firstly, the dynamic model in turning with variable spindle speed is established. Secondly, stability analysis of VDDE based on the RSDM is introduced. For the turning process with variable spindle speed, the RSDM has been proved to be more calculation speed without reducing calculation accuracy than the well-accepted semi-discretization method (SDM) via an example of single degree of freedom turning. Finally, three types of chatter, period-one, flip, and secondary Hopf bifurcations are discussed in detail based on the RSDM. The proposed method is a good alternative method to the stability analysis in turning with variable spindle speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are available selectively from the corresponding author upon reasonable request.

Abbreviations

Ω(t):

Spindle speed

w :

Radial cutting depth

h(t) :

Dynamic chip thickness

m x :

Modal mass

k x :

Modal stiffness

c x :

Modal damping

F x, F y :

Cutting forces respectively in x and y direction

K f :

Cutting constant in the feed direction

w n :

Natural angular frequency.

ζ:

Modal damping rate

τ(t):

Time delay

RVA :

The ratios of modulation amplitude and

RVF :

The ratios of modulation frequency

References

  1. Guo Q, Jiang Y, Zhao B, Ming P (2016) Chatter modeling and stability lobes predicting for non-uniform helix tools. Int J Adv Manuf Technol 87:251–266. https://doi.org/10.1007/s00170-016-8458-y

    Article  Google Scholar 

  2. Jiang S, Yan S, Liu Y, Duan C, Xun J, Sun Y (2019) Analytical prediction of chatter stability in turning of low-stiffness pure iron parts by nosed tool. Int J Adv Manuf Technol 102:1227–1237. https://doi.org/10.1007/s0017001829599

    Article  Google Scholar 

  3. Zhan D, Jiang S, Niu J, Sun Y (2020) Dynamics modeling and stability analysis of five-axis ball-end milling system with variable pitch tools. Int J Mech Sci 182:105774. https://doi.org/10.1016/j.ijmecsci.2020.105774

    Article  Google Scholar 

  4. Wang X, Song Q, Liu Z (2021) Dynamic model and stability prediction of thin-walled component milling with multi-modes coupling effect. J Mater Process Technol 288:116869. https://doi.org/10.1016/j.jmatprotec.2020.116869

    Article  Google Scholar 

  5. Zhang Z, Luo M, Wu B, Zhang D (2020) Dynamic modeling and stability prediction in milling process of thin-walled workpiece with multiple structural modes. Proc Inst Mech Eng B J Eng Manuf:095440542093371. https://doi.org/10.1177/0954405420933710

  6. Jiang S, Sun Y (2020) Stability analysis for a milling system considering multi-point-contact cross-axis mode coupling and cutter run-out effects. Mech Syst Signal Process 141:106452. https://doi.org/10.1016/j.ymssp.2019.106452

    Article  Google Scholar 

  7. Qin C, Tao J, Shi H, Xiao D, Li B, Liu C (2020) A novel Chebyshev-wavelet-based approach for accurate and fast prediction of milling stability. Precis Eng 62:244–255. https://doi.org/10.1016/j.precisioneng.2019.11.016

    Article  Google Scholar 

  8. Qin C, Tao J, Liu C (2018) A predictor-corrector-based holistic-discretization method for accurate and efficient milling stability analysis. Int J Adv Manuf Technol 96(5–8):2043–2054. https://doi.org/10.1007/s00170-018-1727-1

    Article  Google Scholar 

  9. Qin C, Tao J, Liu C (2017) An Adams-Moulton-based method for stability prediction of milling processes. Int J Adv Manuf Technol 89(9–12):3049–3058. https://doi.org/10.1007/s00170-016-9293-x

    Article  Google Scholar 

  10. Qin C, Tao J, Liu C (2019) A novel stability prediction method for milling operations using the holistic-interpolation scheme. J Mech Eng Sci 233(13):4463–4475. https://doi.org/10.1177/0954406218815716

    Article  Google Scholar 

  11. Zhang X, Xiong C, Ding Y, Ding H (2017) Prediction of chatter stability in high speed milling using the numerical differentiation method. Int J Adv Manuf Technol 89:2535–2544. https://doi.org/10.1007/s00170-016-8708-z

    Article  Google Scholar 

  12. Dong X, Qiu Z (2020) Stability analysis in milling based on updated numerical integration method. Mech Syst Signal Process 137:106435. https://doi.org/10.1016/j.ymssp.2019.106435

    Article  Google Scholar 

  13. Zhu L, Liu C (2020) Recent progress of chatter prediction, detection and suppression in milling. Mech Syst Signal Process 146:1–37. https://doi.org/10.1016/j.ymssp.2020.106840

    Article  Google Scholar 

  14. Liu C, Zhu L, Ni C (2018) Chatter detection in milling process based on VMD and energy entropy. Mech Syst Signal Process 105:169–182. https://doi.org/10.1016/j.ymssp.2017.11.046

    Article  Google Scholar 

  15. Dong X, Zhang W (2017) Chatter identification in milling of the thin-walled part based on complexity index. Int J Adv Manuf Technol 91:3327–3337. https://doi.org/10.1007/s00170-016-9912-6

    Article  Google Scholar 

  16. Dun Y, Zhu L, Yan B, Wang S (2021) A chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clustering. Mech Syst Signal Process 158:1–23. https://doi.org/10.1016/j.ymssp.2021.107755

    Article  Google Scholar 

  17. Dong X, Zhang W (2019) Chatter suppression analysis in milling process with variable spindle speed based on the reconstructed semi-discretization method. Int J Adv Manuf Technol 105:2021–2037. https://doi.org/10.1007/s00170-019-04363-0

    Article  Google Scholar 

  18. Wan M, Liang X, Yang Y, Zhang W (2020) Suppressing vibrations in milling-trimming process of the plate-like workpiece by optimizing the location of vibration absorber. J Mater Process Technol 278:116499. https://doi.org/10.1016/j.jmatprotec.2019.116499

    Article  Google Scholar 

  19. Wang C, Zhang X, Liu J, Cao H, Chen X (2019) Adaptive vibration reshaping based milling chatter suppression. Int J Mach Tools Manuf 41:30. https://doi.org/10.1016/j.ijmachtools.2019.04.001

    Article  Google Scholar 

  20. Dang X, Wan M, Zhang W, Yang Y (2021) Chatter analysis and mitigation of milling of the pocket-shaped thin-walled workpieces with viscous fluid. Int J Mech Sci 194:106214. https://doi.org/10.1016/j.ijmecsci.2020.106214

    Article  Google Scholar 

  21. Tlusty J, Polacek M (1963) The stability of the machine tool against self-excited vibration in machining. Mach Sci Technol 1:465–474

    Google Scholar 

  22. Tobias SA (1965) Machine tool vibration. Blackie, London

  23. Insperger T, Stepan G (2004) Stability analysis of turning with periodic spindle speed modulation via semidiscretization. J Vib Control 10(12):1835–1855. https://doi.org/10.1177/1077546304044891

    Article  MATH  Google Scholar 

  24. Altintaş Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44(1):357–362. https://doi.org/10.1016/S0007-8506(07)62342-7

    Article  Google Scholar 

  25. Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling—part I: general formulation. ASME Journal of Dynamic Systems Measurement and Control 120(1):22–30. https://doi.org/10.1115/1.2801317

    Article  Google Scholar 

  26. Merdol S, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci Eng 126(3):459–466. https://doi.org/10.1115/1.1765139

    Article  Google Scholar 

  27. Insperger T, Stepan G (2002) Semi-discretization method for delayed systems. Int J Numer Methods Eng 55(5):503–518. https://doi.org/10.1002/nme.505

    Article  MathSciNet  MATH  Google Scholar 

  28. Insperger T, Mann B, Stépán G, Bayly P (2003) Stability of up-milling and down-milling, part 1: alternative analytical methods. Int J Mach Tools Manuf 43(1):25–34. https://doi.org/10.1016/S0890-6955(02)00159-1

    Article  Google Scholar 

  29. Insperger T, Stépán G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng 61(1):117–141. https://doi.org/10.1002/nme.1061

    Article  MathSciNet  MATH  Google Scholar 

  30. Insperger T, Stépán G, Turi J (2007) State-dependent delay in regenerative turning processes. Nonlinear Dynamics 47(1–3):275–283. https://doi.org/10.1007/s11071-006-9068-2

    Article  MATH  Google Scholar 

  31. Seguy S, Insperger T, Arnaud L, Dessein G, Peigne G (2011) Suppression of period doubling chatter in high speed milling by spindle speed variation. Mach Sci Technol 15(2):153–171. https://doi.org/10.1080/10910344.2011.579796

    Article  Google Scholar 

  32. Insperger T, Stépán G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313(1):334–341. https://doi.org/10.1016/j.jsv.2007.11.040

    Article  Google Scholar 

  33. Davies M, Pratt J, Dutterer B, Burns T (2002) Stability prediction for low radial immersion milling. J Manuf Sci Eng 124(2):217–225. https://doi.org/10.1115/1.1455030

    Article  Google Scholar 

  34. Campomanes M, Altintas Y (2003) An improved time domain simulation for dynamic milling at small radial immersions. J Manuf Sci Eng 125(3):416–422. https://doi.org/10.1115/1.1580852

    Article  Google Scholar 

  35. Li Z, Liu Q (2008) Solution and analysis of chatter stability for end milling in the time-domain. Chin J Aeronaut 21(2):169–178. https://doi.org/10.1016/S1000-9361(08)60022-9

    Article  MathSciNet  Google Scholar 

  36. Ding Y, Zhu L, Zhang X, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tool Manu 50(5):502–509. https://doi.org/10.1016/j.ijmachtools.2010.01.003

    Article  Google Scholar 

  37. Bayly P, Halley J, Mann B, Davies M (2003) Stability of interrupted cutting by temporal finite element analysis. J Manuf Sci Eng 125(2):220–225. https://doi.org/10.1115/1.1556860

    Article  Google Scholar 

  38. Ding Y, Zhu L, Zhang X, Ding H (2011) Numerical integration method for prediction of milling stability. ASME Journal of Manufacturing Science and Engineering 133(3):031005. https://doi.org/10.1115/1.4004136

    Article  Google Scholar 

  39. Dong X, Zhang W, Deng S (2016) The reconstruction of a semi-discretization method for milling stability prediction based on Shannon standard orthogonal basis. Int J Adv Manuf Technol 85(5–8):1501–1511. https://doi.org/10.1007/s00170-015-7719-5

    Article  Google Scholar 

  40. Dong X, Zhang W (2017) Stability analysis in milling of the thin walled part considering multiple variables of manufacturing systems. Int J Adv Manuf Technol 89(1–4):515–527. https://doi.org/10.1007/s00170-016-9072-8

    Article  Google Scholar 

  41. Stoferle T, Grab H (1972) Vermeiden von Ratterschwingungen durch periodische Drehzahlanderung. Werkstatt und Betrieb 105:727

    Google Scholar 

  42. Pakdemirli M, Ulsoy A (1997) Perturbation analysis of spindle speed variation in machine tool chatter. J Vib Control 3(3):261–278. https://doi.org/10.1177/107754639700300302

    Article  Google Scholar 

  43. Jayaram S, Kapoor S, Devor R (2000) Analytical stability analysis of variable spindle speed machining. J Manuf Sci Eng 122(3):391–397. https://doi.org/10.1115/1.1285890

    Article  Google Scholar 

  44. Sastry S, Kapoor S, Devor R, Dullerud G (2001) Chatter stability analysis of the variable speed face-milling process. J Manuf Sci Eng 123(4):753–756. https://doi.org/10.1115/1.1373649

    Article  Google Scholar 

  45. Yilmaz A, Al-Regib E, Ni J (2002) Machine tool chatter suppression by multilevel random spindle speed variation. J Manuf Sci Eng 124(2):208–216. https://doi.org/10.1115/1.1378794

    Article  Google Scholar 

  46. Namachchivaya S, Beddini (2003) Spindle speed variation for the suppression of regenerative chatter. Journal of Nonlinear Science 13(3):265–288. https://doi.org/10.1007/s00332-003-0518-4

    Article  MathSciNet  MATH  Google Scholar 

  47. Long X, Balachandran B (2005) Stability analysis of a variable spindle speed milling process. ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference850: 899–908. https://doi.org/10.1115/DETC2005-85065

  48. Zatarain M, Bediaga I, Muñoa J, Lizarralde R (2008) Stability of milling processes with continuous spindle speed variation: analysis in the frequency and time domains, and experimental correlation. CIRP Ann Manuf Technol 57(1):379–384. https://doi.org/10.1016/j.cirp.2008.03.067

    Article  Google Scholar 

  49. Seguy S, Insperger T, Arnaud L, Dessein G, Peigné G (2010) On the stability of high-speed milling with spindle speed variation. Int J Adv Manuf Technol 48(9–12):883–895. https://doi.org/10.1007/s00170-009-2336-9

    Article  Google Scholar 

  50. Wu D, Chen K (2010) Chatter suppression in fast tool servo-assisted turning by spindle speed variation. International Journal of Machine Tools & Manufacture 50(12):1038-1047.https://doi.org/10.1016/j.ijmachtools.2010.09.001

  51. Long X, Balachandran B (2010) Stability of up-milling and down-milling operations with variable spindle speed. J Vib Control 16(16):1151–1168. https://doi.org/10.1177/1077546309341131

    Article  MathSciNet  MATH  Google Scholar 

  52. Xie Q, Zhang Q (2012) Stability predictions of milling with variable spindle speed using an improved semi-discretization method. Math Comput Simul 85(3):78–89. https://doi.org/10.1016/j.matcom.2012.09.017

    Article  MathSciNet  Google Scholar 

  53. Otto A, Radons G (2013) Application of spindle speed variation for chatter suppression in turning. CIRP J Manuf Sci Technol 6(2):102–109. https://doi.org/10.1016/j.cirpj.2013.02.002

    Article  Google Scholar 

  54. Liang XG, Yao ZQ, Luo L, Hu J (2013) An improved numerical integration method for predicting milling stability with varying time delay. Int J Adv Manuf Technol 68(9–12):1967–1976. https://doi.org/10.1007/s00170-013-4813-4

    Article  Google Scholar 

  55. Totis G, Albertelli P, Sortino M, Monno M (2014) Efficient evaluation of process stability in milling with spindle speed variation by using the Chebyshev collocation method. J Sound Vib 333(3):646–668. https://doi.org/10.1016/j.jsv.2013.09.043

  56. Ding Y, Niu J, Zhu L, Ding Y (2015) Numerical integration method for stability analysis of milling with variable spindle speeds. J Vib Acoust 138(1):0110101–01101011. https://doi.org/10.1115/1.4031617

    Article  Google Scholar 

  57. Urbikain G, Olvera D, Lacalle L, Elías-Zúñiga A (2016) Spindle speed variation technique in turning operations: modeling and real implementation. J Sound Vib 383:384–396. https://doi.org/10.1016/j.jsv.2016.07.033

    Article  Google Scholar 

  58. Ding Y, Niu J, Zhu L, Ding H (2016) Numerical integration method for stability analysis of milling with variable spindle speeds. J Vib Acoust 138(1):011010.1–011010.11. https://doi.org/10.1115/1.4031617

    Article  Google Scholar 

  59. Niu J, Ding Y, Zhu L, Ding H Stability analysis of milling processes with periodic spindle speed variation via the variable-step numerical integration method. J Manuf Sci Eng 138(11):11450111. https://doi.org/10.1115/1.4033043

Download references

Acknowledgements

The corresponding author would like to thank Professor Tamás Insperger, Budapest University of Technology and Economics, who provides help for the research.

Code availability

All code can be provided selectively from the corresponding author upon reasonable request.

Funding

This study is supported, respectively, by the “Excellent Doctoral Program of Weifang University,” “Research start-up funds of Weifang University.”

Author information

Authors and Affiliations

Authors

Contributions

The first author completed the main work, and the second author completed the auxiliary work.

Corresponding author

Correspondence to Xinfeng Dong.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Shen, X. & Fu, Z. Stability analysis in turning with variable spindle speed based on the reconstructed semi-discretization method. Int J Adv Manuf Technol 117, 3393–3403 (2021). https://doi.org/10.1007/s00170-021-07869-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07869-8

Keywords

Navigation