Skip to main content
Log in

Modeling, analysis, and removal of chatter marks in flexible turning

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Chatter is a kind of self-excited, unstable vibration in almost all machining processes. Existing studies have been focusing on the pre-chatter stage, developing various techniques to detect, predict, and suppress chatter. In real applications, chatter will inevitably happen under certain cutting conditions, with generating chatter marks on the workpiece surface. Additional operations are required to remove chatter marks before the finish machining. It is noted that chatter marks will easily induce chatter again, resulting in worse surface quality. This paper quantitatively analyzes the effects of chatter marks on the stability of the process by modeling chatter marks with a periodically modulated depth of cut. Stability lobes show that the existence of chatter marks greatly reduces the stability limit. Furthermore, chatter mark removal using spindle speed variation (SSV) is proposed. Extended high-order full-discretization method using Lagrange interpolation is developed to analyze the effect of SSV on chatter marks removal. It is shown that SSV can remarkably improve the stability limit even with chatter marks. Finally, machining experiments of thin-walled discs are conducted to verify the deterioration effect of chatter marks on the stability limit and show that chatter marks can be effectively removed by the SSV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 25(5):363–376

    Article  Google Scholar 

  2. Siddhpura M, Paurobally R (2012) A review of chatter vibration research in turning. Int J Mach Tools Manuf 61(10):27–47

    Article  Google Scholar 

  3. Chen CK, Tsao YM (2006) A stability analysis of regenerative chatter in turning process without using tailstock. Int J Adv Manuf Technol 29(7):648–654

    Article  Google Scholar 

  4. Siddhpura M, Siddhpura A, Paurobally R (2017) Chatter stability prediction for a flexible tool-workpiece system in a turning process. Int J Adv Manuf Technol 1–16. doi:10.1007/s00170-017-0208-2

  5. Frumuşanu GR, Epureanu A, Constantin IC (2012) Method for early detection of the regenerative instability in turning. Int J Adv Manuf Technol 58(1):29–43

    Article  Google Scholar 

  6. Altintas Y (2000) Manufacturing automation: principles of metal cutting and machine tool vibrations. Cambridge, New York

  7. Wan M, Ma YC, Feng J, Zhang WH (2016) Study of static and dynamic ploughing mechanisms by establishing generalized model with static milling forces. Int J Mech Sci 114:120–131

    Article  Google Scholar 

  8. Wan M, Ma YC, Zhang WH, Yang Y (2015) Study on the construction mechanism of stability lobes in milling process with multiple modes. Int J Adv Manuf Technol 79:589–603

    Article  Google Scholar 

  9. Sekar M, Srinivas J, Kotaiah KR, Yang SH (2009) Stability analysis of turning process with tailstock-supported workpiece. Int J Adv Manuf Technol 43(9):862–871

    Article  Google Scholar 

  10. Otto A, Khasawneh FA, Radons G (2015) Position-dependent stability analysis of turning with tool and workpiece compliance. Int J Adv Manuf Technol 79(9):1453–1463

    Article  Google Scholar 

  11. Insperger T, Stépán G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313(1):334–341

    Article  Google Scholar 

  12. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509

    Article  Google Scholar 

  13. Urbikain G, Fernández A, de Lacalle LL, Gutiérrez ME (2013) Stability lobes for general turning operations with slender tools in the tangential direction. Int J Mach Tools Manuf 67(4):35–44

    Article  Google Scholar 

  14. Sun YX, Xiong ZH (2016) An optimal weighted wavelet packet entropy method with application to real-time chatter detection. IEEE/ASME Trans Mechatron 21(4):2004–2014

    Article  Google Scholar 

  15. Rafal R, Pawel L, Krzysztof K, Bogdan K, Jerzy W (2015) Chatter identification methods on the basis of time series measured during titanium superalloy milling. Int J Mech Sci 99(8):196–207

    Article  Google Scholar 

  16. Delio T, Tlusty J, Smith S (1992) Use of audio signals for chatter detection and control. J Manuf Sci Eng 114(2):146–157

    Article  Google Scholar 

  17. Turner S, Merdol S, Altintas Y, Ridgway K (2007) Modelling of the stability of variable helix end mills. Int J Mach Tools Manuf 47(9):1410–1416

    Article  Google Scholar 

  18. Urbikain G, Olvera D, de Lacalle LL, Elías-Zúñiga A (2016) Spindle speed variation technique in turning operations: modeling and real implementation. J Sound Vib 383:384–396

    Article  Google Scholar 

  19. Tarng YS, Hseih YW, Li TC (1996) Automatic selection of spindle speed for suppression of regenerative chatter in turning. Int J Adv Manuf Technol 11(1):12–17

    Article  Google Scholar 

  20. Pour DS, Behbahani S (2016) Semi-active fuzzy control of machine tool chatter vibration using smart MR dampers. Int J Adv Manuf Technol 83(1):1–8

    Google Scholar 

  21. Matsubara A, Maeda M, Yamaji I (2014) Vibration suppression of boring bar by piezoelectric actuators and LR circuit. CIRP Ann Manuf Technol 63(1):373–376

    Article  Google Scholar 

  22. Yeh LJ, Lai GJ (1995) A study of the monitoring and suppression system for turning slender workpieces. Proc Inst Mech Eng B J Eng Manuf 209(3):227–236

    Article  Google Scholar 

  23. Insperger T, Stépán G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng 61(1):117–141

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu Y, Fischer A, Eberhard P, Wu B (2015) A high-order full-discretization method using Hermite interpolation for periodic time-delayed differential equations. Acta Mech Sinica 31(3):406–415

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun YX, Xiong ZH (2017) High-order full-discretization method using Lagrange interpolation for stability analysis of turning processes with stiffness variation. J Sound Vib 386:50–64

    Article  Google Scholar 

  26. Stoferle T, Grab H (1972) Vermeiden von Ratterschwingungen durch Periodische Drehzahlanderung. Werkst Betrieb 105:727–730

    Google Scholar 

  27. Insperger T, Stépán G (2011) Semi-discretization for time-delay systems: stability and engineering applications. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  28. de Canniere J, van Brussel H, van Bogaert J (1981) A contribution to the mathematical analysis of variable spindle speed machining. Appl Math Model 5(3):158–164

    Article  Google Scholar 

  29. Al-Regib E, Ni J, Lee SH (2003) Programming spindle speed variation for machine tool chatter suppression. Int J Mach Tools Manuf 43(12):1229–1240

    Article  Google Scholar 

  30. Insperger T, Stépán G (2004) Stability analysis of turning with periodic spindle speed modulation via semi-discretization. J Vib Control 10(12):1835–1855

    MATH  Google Scholar 

  31. Meng HF, Kang Y, Chen Z, Zhao YB, Liu GP (2015) Stability analysis and stabilization of a class of cutting systems with chatter suppression. IEEE/ASME Trans Mechatron 20(2):991–996

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Xiong, Z. Modeling, analysis, and removal of chatter marks in flexible turning. Int J Adv Manuf Technol 93, 4187–4196 (2017). https://doi.org/10.1007/s00170-017-0856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0856-2

Keywords

Navigation