Skip to main content

Advertisement

Log in

In situ investigation of nanometric cutting of 3C-SiC using scanning electron microscope

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Experimentally revealing the nanometric deformation behavior of 3C-SiC is challenging due to its ultra-small feature size for brittle-to-ductile transition. In the present work, we elucidated the nanometric cutting mechanisms of 3C-SiC by performing in situ nanometric cutting experiments under scanning electron microscope (SEM), as well as post-characterization by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). In particular, a new method based on the combination of image processing technology and SEM online observation was proposed to achieve in situ measurement of cutting force with an uncertainty less than 1 mN. Furthermore, the cutting cross-section was characterized by atomic force microscope (AFM) to access the specific cutting energy. The results revealed that the specific cutting energy increase non-linearly with the decrease of cutting depth due to the size effect of cutting tool in nanometric cutting. The high-pressure phase transformation (HPPT) may play the major role in 3C-SiC ductile machining under the parameters of this experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data and material information in this study are included in this published article.

Code availability

The software application and custom code cannot be shared at this time as these also forms part of an ongoing study.

References

  1. Neudeck PG (2000) SiC technology. CRC Press Inc, Florida

    Google Scholar 

  2. Snead LL, Nozawa T, Ferraris M, Katoh Y, Shinavski R, Sawan M (2011) Silicon carbide composites as fusion power reactor structural materials. J Nucl Mater 417:330–339. https://doi.org/10.1016/j.jnucmat.2011.03.005

    Article  Google Scholar 

  3. Yuan XL, Hobbs LW (2000) Influence of interatomic potentials in MD investigation of ordering in a-SiC. MRS Proc 650:R3.18.1–R3.18.6. https://doi.org/10.1557/proc-650-r3.18

    Article  Google Scholar 

  4. Dzurak A (2011) Quantum computing: diamond and silicon converge. Nature 479:47–48. https://doi.org/10.1038/479047a

    Article  Google Scholar 

  5. Fan HT, Xu CH, Wang ZH, Wang G, Liu CJ, Liang JK, Chen XL, Wei ZY (2014) Generation of broadband 17-μJ mid-infrared femtosecond pulses at 3.75 μm by silicon carbide crystal. Opt Lett 39:6249–6252. https://doi.org/10.1364/OL.39.006249

    Article  Google Scholar 

  6. Shore P, Cunningham C, Debra D, Evans C, Hough J, Gilmozzi R, Kunzmann H, Morantz P, Tonnellier X (2010) Precision engineering for astronomy and gravity science. CIRP Ann Manuf Technol 59:694–716. https://doi.org/10.1016/j.cirp.2010.05.003

    Article  Google Scholar 

  7. Loan PRV (1967) A study of polytypism in silicon carbide. Am Mineral 52:946–956

    Google Scholar 

  8. Singh D, Salem J, Kirihara S, Widjaja S (2013) Mechanical properties and performance of engineering ceramics and composites VIII. The American Ceramic Society, Florida

    Book  Google Scholar 

  9. Mélinon P, Masenelli B, Tournus F, Perez A (2007) Playing with carbon and silicon at the nanoscale. Nat Mater 6:479–490. https://doi.org/10.1038/nmat1914

    Article  Google Scholar 

  10. Fang FZ, Chen LJ (2000) Ultra-precision cutting for ZKN7 glass. CIRP Ann Manuf Technol 49:17–20. https://doi.org/10.1016/S0007-8506(07)62887-X

    Article  Google Scholar 

  11. Fang FZ, Venkatesh VC (1998) Diamond cutting of silicon with nanometric finish. CIRP Ann Manuf Technol 47:45–49. https://doi.org/10.1016/S0007-8506(07)62782-6

    Article  Google Scholar 

  12. He Y, Lai M, Fang FZ (2019) A numerical study on nanometric cutting mechanism of lutetium oxide single crystal. Appl Surf Sci 496:143715.1–143715.13. https://doi.org/10.1016/j.apsusc.2019.143715

    Article  Google Scholar 

  13. Fang FZ, Zhang GX (2003) An experimental study of edge radius effect on cutting single crystal silicon. Int J Adv Manuf Technol 22:703–707. https://doi.org/10.1007/s00170-003-1593-2

    Article  Google Scholar 

  14. Yoshida M, Onodera A, Ueno M, Takemura K, Shimomura O (1993) Pressure-induced phase transition in SiC. Phys Rev B Condens Matter 48:10587–10590. https://doi.org/10.1103/PhysRevB.48.10587

    Article  Google Scholar 

  15. Shimojo F, Ebbsjo I, Kalia RK, Nakano A, Vashishta P (2000) Molecular dynamics simulation of structural transformation in silicon carbide under pressure. Phys Rev Lett 84:3338–3341. https://doi.org/10.1103/PhysRevLett.84.3338

    Article  Google Scholar 

  16. Mishra M, Szlufarska I (2009) Possibility of high-pressure transformation during nanoindentation of SiC. Acta Mater 57:6156–6165. https://doi.org/10.1016/j.actamat.2009.08.041

    Article  Google Scholar 

  17. Noreyan A, Amar JG, Marinescu I (2005) Molecular dynamics simulations of nanoindentation of β-SiC with diamond indenter. Mater Sci Eng B 117:235–240. https://doi.org/10.1016/j.mseb.2004.11.016

    Article  Google Scholar 

  18. Zhao XF, Langford RM, Shapiro IP, Ping X (2011) Onset plastic deformation and cracking behavior of silicon carbide under contact load at room temperature. J Am Ceram Soc 94:3509–3514. https://doi.org/10.1111/j.1551-2916.2011.04674.x

    Article  Google Scholar 

  19. Tang MJ (1995) Elastic instabilities and structural responses of β-SiC under stress. Dissertation, Massachusetts Institute of Technology

    Google Scholar 

  20. Noreyan A, Amar JG (2008) Molecular dynamics simulations of nanoscratching of 3C SiC. Wear 256:956–962. https://doi.org/10.1016/j.wear.2008.02.020

    Article  Google Scholar 

  21. Goel S, Luo XC, Reuben RL, Rashid WB (2011) Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting. Nanoscale Res Lett 6:589. https://doi.org/10.1186/1556-276X-6-589

    Article  Google Scholar 

  22. Mishra M, Szlufarska I (2013) Dislocation controlled wear in single crystal silicon carbide. J Mater Sci 48:1593–1603. https://doi.org/10.1007/s10853-012-6916-y

    Article  Google Scholar 

  23. Goel S, Stukowski A, Luo XC, Agrawal A, Reuben RL (2013) Anisotropy of single-crystal 3C–SiC during nanometric cutting. Model Simul Mater Sci Eng 21:2848–2855. https://doi.org/10.1088/0965-0393/21/6/065004

    Article  Google Scholar 

  24. Wu ZH, Liu WD, Zhang LC (2017) Revealing the deformation mechanisms of 6H-silicon carbide under nano-cutting. Comput Mater Sci 137:282–288. https://doi.org/10.1016/j.commatsci.2017.05.048

    Article  Google Scholar 

  25. Zhang JJ, Han L, Zhang JG, Liu HY, Yan YD, Sun T (2018) Brittle-to-ductile transition in elliptical vibration-assisted diamond cutting of reaction-bonded silicon carbide. J Manuf Process 45:670–681. https://doi.org/10.1016/j.jmapro.2019.08.005

    Article  Google Scholar 

  26. Luo XC, Goel S, Reuben RL (2012) A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide. J Eur Ceram Soc 32:3423–3434. https://doi.org/10.1016/j.jeurceramsoc.2012.04.016

    Article  Google Scholar 

  27. Chavoshi SZ, Luo XC (2016) Molecular dynamics simulation study of deformation mechanisms in 3C-SiC during nanometric cutting at elevated temperatures. Mater Sci Eng A 654:400–417. https://doi.org/10.1016/j.msea.2015.11.100

    Article  Google Scholar 

  28. Liu L, Xu ZW, Tian DY, Hartmaier A, Luo XC, Zhang JJ, Nordlund K, Fang FZ (2019) MD simulation of stress-assisted nanometric cutting mechanism of 3C silicon carbide. Ind Lubr Tribol 71:686–691. https://doi.org/10.1108/ILT-03-2019-0096

    Article  Google Scholar 

  29. Goel S, Luo XC, Reuben RL (2012) Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide. Comput Mater Sci 51:402–408. https://doi.org/10.1016/j.commatsci.2011.07.052

    Article  Google Scholar 

  30. Goel S (2012) Shear instability of nanocrystalline silicon carbide during nanometric cutting. Appl Phys Lett 100:535–538. https://doi.org/10.1063/1.4726036

    Article  Google Scholar 

  31. Goel S, Luo XC, Reuben RL, Rashid WB, Sun JN (2012) Single point diamond turning of single crystal silicon carbide: molecular dynamic simulation study. Key Eng Mater 496:150–155. https://doi.org/10.4028/www.scientific.net/KEM.496.150

    Article  Google Scholar 

  32. Xu ZW, Liu L, He ZD, Tian DY, Hartmaier A, Zhang JJ, Luo XC, Rommel M, Nordlund K, Zhang GX, Fang FZ (2020) Nanocutting mechanism of 6H-SiC investigated by scanning electron microscope online observation and stress-assisted and ion implant-assisted approaches. Int J Adv Manuf Technol 106:3869–3880. https://doi.org/10.1007/s00170-019-04886-6

    Article  Google Scholar 

  33. Yan JW, Zhang ZY, Kuriyagawa T (2009) Mechanism for material removal in diamond turning of reaction-bonded silicon carbide. Int J Mach Tools Manuf 49:366–374. https://doi.org/10.1016/j.ijmachtools.2008.12.007

    Article  Google Scholar 

  34. Patten J, Gao W, Yasuto K (2005) Ductile regime nanomachining of single-crystal silicon carbide. J Manuf Sci Eng 127:522–532. https://doi.org/10.1115/1.1949614

    Article  Google Scholar 

  35. Fang FZ, Liu B, Xu ZW (2015) Nanometric cutting in a scanning electron microscope. Precis Eng 41:145–152. https://doi.org/10.1016/j.precisioneng.2015.01.009

    Article  Google Scholar 

  36. Liu B, Fang FZ, Li R, Xu ZW, Liang YS (2018) Experimental study on size effect of tool edge and subsurface damage of single crystal silicon in nano-cutting. Int J Adv Manuf Technol 98:1093–1101. https://doi.org/10.1007/s00170-018-2310-5

    Article  Google Scholar 

  37. Otsu N (2007) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  38. Cheng K, Huo D (2013) Micro cutting mechanics. John Wiley & Sons Ltd., Manhattan

    Book  Google Scholar 

  39. McGeough J (2001) Micromachining of engineering materials. Proc Inst Mech Eng B J Eng Manuf 216:607. https://doi.org/10.1243/0954405021520094

    Article  Google Scholar 

  40. Goel S (2014) The current understanding on the diamond machining of silicon carbide. J Phys D Appl Phys 47:113–116. https://doi.org/10.1088/0022-3727/47/24/243001

    Article  Google Scholar 

  41. Zhu Y, Xiang Z, Xie LL, Zhang YC, Zhao JC (2015) Study of the effects of cutting parameters on poly-silicon nano machining. Appl Mech Mater 697:369–372. https://doi.org/10.4028/www.scientific.net/AMM.697.369

    Article  Google Scholar 

  42. Choi DH, Lee JR, Kang NR, Je TJ, Kim JY, Jeon EC (2017) Study on ductile mode machining of single-crystal silicon by mechanical machining. Int J Mach Tools Manuf 113:1–9. https://doi.org/10.1016/j.ijmachtools.2016.10.006

    Article  Google Scholar 

  43. Fang FZ, Wu H, Zhou W, Hu XT (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol 184:407–410. https://doi.org/10.1016/j.jmatprotec.2006.12.007

    Article  Google Scholar 

  44. Connor BPO, Marsh ER, Couey JA (2005) On the effect of crystallographic orientation on ductile material removal in silicon. Precis Eng 29:124–132. https://doi.org/10.1016/j.precisioneng.2004.05.004

    Article  Google Scholar 

  45. Tse JS, Klug DD, Gao F (2006) Hardness of nanocrystalline diamonds. Phys Rev B 73:140102(R). https://doi.org/10.1103/PhysRevB.73.140102

    Article  Google Scholar 

  46. Patten JA, Fesperman R, Kumar S, McSpadden S, Qu J, Lance M, Nemanich R, Huening J (2003) High-pressure phase transformation of silicon nitride. Appl Phys Lett 83:4740–4742. https://doi.org/10.1063/1.1632031

    Article  Google Scholar 

  47. Patten JA, Jacob J (2008) Comparison between numerical simulations and experiments for single point diamond turning of silicon carbide. J Manuf Process 10:28–33. https://doi.org/10.1016/j.jmapro.2008.08.001

    Article  Google Scholar 

  48. Liu B, Xu ZW, Wang Y, Gao X, Kong RJ (2020) Effect of ion implantation on material removal mechanism of 6H-SiC in nano-cutting: a molecular dynamics study. Comput Mater Sci 174:109476. https://doi.org/10.1016/j.commatsci.2019.109476

    Article  Google Scholar 

  49. Sawangsri W, Cheng K (2016) An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear. Proc Inst Mech Eng B J Eng Manuf 230:405–415. https://doi.org/10.1177/0954405414554020

    Article  Google Scholar 

  50. Rahman MA, Rahman M, Mia M, Gupta MK, Sen B, Ahmed A (2020) Investigation of the specific cutting energy and its effect in shearing dominant precision micro cutting. J Mater Process Technol 283:116688. https://doi.org/10.1016/j.jmatprotec.2020.116688

    Article  Google Scholar 

  51. Fang FZ, Xu FF (2018) Recent advances in micro/nano-cutting: effect of tool edge and material properties. Nanomanuf Metrol 1:4–31. https://doi.org/10.1007/s41871-018-0005-z

    Article  Google Scholar 

  52. Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tools Manuf 45:1681–1686. https://doi.org/10.1016/j.ijmachtools.2005.03.010

    Article  Google Scholar 

  53. Gogotsi YG, Kailer A, Nickel KG (1997) Phase transformations in materials studied by micro-Raman spectroscopy of indentations. Mater Res Innov 1:3–9. https://doi.org/10.1007/s100190050011

    Article  Google Scholar 

Download references

Acknowledgements

The study is supported by the National Natural Science Foundation of China (No. 51761135106, 51575389), the National Key Research and Development Program of China (2016YFB1102203), the State key laboratory of precision measuring technology and instruments (Pilt1705), the ‘111’ project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (No. B07014), and the Harbin Core Tomorrow Science & Technology Co., Ltd.

Funding

This study was funded by the National Natural Science Foundation of China (No. 51761135106, 51575389), the National Key Research and Development Program of China (2016YFB1102203), and the ‘111’ project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (No. B07014).

Author information

Authors and Affiliations

Authors

Contributions

Zongwei Xu contributed to the conception of the study;

Zongwei Xu and Dongyu Tian performed the main part of the experiment;

Zongwei Xu, Junjie Zhang, Alexander Hartmaier, Bing Liu, and Lei Liu contributed significantly to analysis and manuscript preparation;

Zongwei Xu and Dongyu Tian performed the data analyses and wrote the manuscript;

Junjie Zhang, Alexander Hartmaier, Xichun Luo, Le Song, Lei Liu, and Zhanqi Zhou helped perform the analysis with constructive discussions;

Xuesen Zhao and Le Song helped perform part of the experiment.

Corresponding authors

Correspondence to Zongwei Xu or Junjie Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, D., Xu, Z., Liu, L. et al. In situ investigation of nanometric cutting of 3C-SiC using scanning electron microscope. Int J Adv Manuf Technol 115, 2299–2312 (2021). https://doi.org/10.1007/s00170-021-07278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07278-x

Keywords

Navigation