Skip to main content
Log in

Improvement of dimensional accuracy and surface quality of microlens arrays by a profile cutting method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Single-point diamond cutting is an efficient method to fabricate microlens arrays (MLAs). However, machining MLAs at the microscale with high dimensional accuracy and a smooth surface finish is a difficult task. In this study, a method of profile cutting is proposed to machine MLAs on electroless nickel–phosphorus (Ni–P) plating. To improve the dimensional accuracy of MLAs, a precision tool setting method is introduced, via which the precision of MLA sag can be controlled to within 20 nm. In addition, the formation mechanism of corrugation defects is studied via a finite element (FE) simulation of the wedge nano-cutting process and a cutting experiment of concentric ring grooves. By optimizing the tool settings and the machining parameters, high-quality MLAs with apertures of Φ100 μm can be created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data are presented within the manuscript.

References

  1. Pan JW, Wang CM, Lan HC, Sun WS, Chang JY (2007) Homogenized LED-illumination using microlens arrays for a pocket-sized projector. Opt Express 15(17):50483–50491. https://doi.org/10.1364/OE.15.010483

    Article  Google Scholar 

  2. Gallagher NC, Roychoudhuri CS (1993) Miniature and micro-optics and micromechanics. In: Miniature and micro-optics and micromechanics, vol. 1992. https://spie.org/Publications/Proceedings/Volume/1992?SSO=1. Accessed 15 Dec 2020

  3. Dong X, Zhou T, Pang S, Liang Z, Yu Q, Ruan B, Wang X (2019) Comparison of fly cutting and transverse planing for micropyramid array machining on nickel phosphorus plating. Int J Adv Manuf Technol 502:2481–2489. https://doi.org/50.5007/s00170-019-03335-8

  4. Zhou T, Xu R, Ruan B, Liang Z, Wang X (2018) Fabrication of microlens array on 6H-SiC mold by an integrated microcutting-etching process. Precis Eng 54(2018):314–320. https://doi.org/50.5016/j.precisioneng.2018.06.008

  5. Yan J, Zhou T, Masuda J, Kuriyagawa T (2009) Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis. Precis Eng 33(2):150–159. https://doi.org/10.1016/j.precisioneng.2008.05.005

    Article  Google Scholar 

  6. Zhou T, Yan J, Masuda J, Kuriyagawa T (2011) Investigation on shape transferability in ultraprecision glass molding press for microgrooves. Precis Eng 35(2):214–220. https://doi.org/10.1016/j.precisioneng.2010.09.011

    Article  Google Scholar 

  7. Xie J, Zhou T, Ruan B, Du Y, Wang X (2017) Effects of interface thermal resistance on surface morphology evolution in precision glass molding for microlens array. Appl Opt 56(23):6622–6628. https://doi.org/10.1364/AO.56.006622

    Article  Google Scholar 

  8. Zhou T, Ruan B, Zhou J, Dong X, Wang X (2019) Mechanism of brittle fracture in diamond turning of microlens array on polymethyl methacrylate. Adv Manuf 7:228–237 https://doi.org.org/50.5007/s40436-019-00260-7

    Article  Google Scholar 

  9. Aono Y, Negishi M, Takano J (2000) Development of large-aperture aspherical lens with glass molding. Proc SPIE Int Soc Opt Eng 4231:16–23. https://doi.org/10.1117/12.402759

    Article  Google Scholar 

  10. Albero J, Nieradko L, Gorecki C, Ottevaere H, Passilly N (2009) Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques. Opt Express 17:6283–6292. https://doi.org/10.1364/OE.17.006283

    Article  Google Scholar 

  11. Oliveira OG, Monteiro DW, Costa RFO (2014) Optimized microlens-array geometry for Hartmann-Shack wavefront sensor. Opt Lasers Eng 55:155–161. https://doi.org/10.1016/j.optlaseng.2013.11.006

    Article  Google Scholar 

  12. Ow YS, Breese MBH, Azimi S (2050) Fabrication of concave silicon micro-mirrors. Opt Express 18:14511–14518. https://doi.org/10.1364/OE.18.014511

    Article  Google Scholar 

  13. Deng Z, Yang Q, Chen F, Meng X, Bian H (2015) Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Opt Lett 40:1928–1931. https://doi.org/10.1364/OL.40.001928

    Article  Google Scholar 

  14. Weck M, Hennig J, Hilbing R (2001) Precision cutting processes for manufacturing of optical components. SPIE 4440:145–151. https://doi.org/10.1117/12.448034

    Article  Google Scholar 

  15. Yi AY, Li L (2005) Design and fabrication of a microlens array by use of a slow tool servo. Opt Lett 30(13):1707–1709. https://doi.org/10.1364/OL.30.001707

    Article  Google Scholar 

  16. Yu DP, Hong GS, Wong YS (2012) Profile error compensation in fast tool servo diamond turning of micro-structured surfaces. Int J Mach Tool Manu 52(1):13–23. https://doi.org/10.1016/j.ijmachtools.2011.08.010

    Article  Google Scholar 

  17. Yan J, Zhang Z, Kuriyagawa T, Gonda H (2010) Fabricating micro-structured surface by using single-crystalline diamond end mill. Int J Adv Manuf Technol 51(9−12):957–964. https://doi.org/10.1007/s00170-010-2695-2

    Article  Google Scholar 

  18. Mao M, Jiwang Y (2017) Fabrication of hexagonal microlens arrays on single-crystal silicon using the tool-servo driven segment turning method. Micromachines-Basel 8(11):323. https://doi.org/10.3390/mi8110323

    Article  Google Scholar 

  19. Yan J, Oowada T, Zhou T, Kuriyagawa T (2009) Precision machining of microstructures on electroless-plated Ni–P surface for molding glass components. J Mater Process Technol 209(50):4802–4808. https://doi.org/10.1016/j.jmatprotec.2008.12.008

    Article  Google Scholar 

  20. Jiang X, Li B, Yang J, Zuo X, Li K (2013) An approach for analyzing and controlling residual stress generation during high-speed circular milling. Int J Adv Manuf Technol 66(9-12):1439–1448. https://doi.org/10.1007/s00170-012-4421-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also like to acknowledge the support from the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 151052).

Code availability

Not applicable.

Funding

This work has been financially supported by the National Natural Science Foundation of China (Nos. 51775046 and 51875043) and Beijing Municipal Natural Science Foundation (JQ20015).

Author information

Authors and Affiliations

Authors

Contributions

Tianfeng Zhou and Benshuai Ruan: conceptualization, formal analysis, investigation, writing—original draft, and visualization. Qian Yu, Jia Zhou, Peng Liu, and Wenxiang Zhao: conceptualization, supervision, and writing—review and editing. Xibin Wang: conceptualization and writing—review and editing.

Corresponding author

Correspondence to Tianfeng Zhou.

Ethics declarations

Ethical approval

The article follows the guidelines of the Committee on Publication Ethics (COPE) and involves no studies on human or animal subjects.

Consent to participate

Not applicable. The article involves no studies on humans.

Consent to publish

Not applicable. The article involves no studies on humans.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Ruan, B., Yu, Q. et al. Improvement of dimensional accuracy and surface quality of microlens arrays by a profile cutting method. Int J Adv Manuf Technol 115, 1877–1888 (2021). https://doi.org/10.1007/s00170-021-07072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07072-9

Keywords

Navigation