Skip to main content
Log in

Mechanism of brittle fracture in diamond turning of microlens array on polymethyl methacrylate

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

Diamond cutting is a popular method to fabricate microlens array (MLA) on polymethyl methacrylate (PMMA); however, it is limited by brittle fracture, which is formed easily on the surface of MLA during the cutting process. In this paper, the formation mechanism of the brittle fracture is studied via a series of experiments including the slow tool servo (STS) cutting experiment of MLA, surface scratching experiment and sudden-stop cutting experiment. The effects of undeformed chip thickness, feed rate, and machining track on brittle fracture formation are investigated in detail. In addition, based on the fracture formation mechanism, a bi-directional cutting approach is proposed to eliminate the regional brittle fracture of the microlens during diamond cutting. An experiment was then conducted to verify the method; the results demonstrated that bi-directional cutting could eliminate brittle fracture entirely. Finally, a spherical MLA with the form error (vPV) of 60 nm and the surface roughness (Ra) of 8 nm was successfully fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Peter YA, Herzig HP, Dandliker R (2002) Microoptical fiber switch for a large number of interconnects: optical design considerations and experimental realizations using microlens arrays. IEEE J Sel Top Quantum 8(1):46–57

    Article  Google Scholar 

  2. Borrelli NF, Morse DL, Bellman RH et al (1985) Photolytic technique for producing microlenses in photosensitive glass. Appl Opt 24(16):2520

    Article  Google Scholar 

  3. Mao M, Yan J (2016) Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo. Int J Mach Tool Manuf 115:2–14

    Google Scholar 

  4. Deng Z, Yang Q, Chen F et al (2015) Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Opt Lett 40(9):1928–1931

    Article  Google Scholar 

  5. Wang Y, Li D, Luo C et al (2013) Viewing angle enhanced integral imaging display based on double-micro-lens array. J Soc Inf Display 21(7):289–294

    Article  Google Scholar 

  6. Xie W, Wang QH, Wang YZ et al (2014) Depth-enhanced integral imaging system with convex and composite concave micro-lens arrays. Optik 125(20):6087–6089

    Article  Google Scholar 

  7. Ottevaere H, Cox R, Herzig HP et al (2007) Comparing glass and plastic refractive microlenses fabricated with different technologies. J Opt A Pure Appl Opt 8(2006):S407–S429

    Google Scholar 

  8. Popovic ZD, Sprague RA, Connell GA (1988) Technique for monolithic fabrication of microlens arrays. Appl Opt 27(7):1281–1284

    Article  Google Scholar 

  9. Croutxé-Barghorn C, Soppera O, Lougnot DJ (2001) Fabrication of refractive microlens arrays by visible, irradiation, of acrylic monomers: influence of photonic, parameters. Eur Phys J Appl Phys 13(1):31–37

    Article  Google Scholar 

  10. Tripathi A, Chokshi TV, Chronis N (2009) A high numerical aperture, polymer-based, planar microlens array. Opt Express 17(22):19908–19918

    Article  Google Scholar 

  11. He M, Yuan XC, Ngo NQ et al (2004) Single-step fabrication of a microlens array in sol gel material by direct laser writing and its application in optical coupling. J Opt A Pure Appl Opt 6(6):94–97

    Article  Google Scholar 

  12. Wu D, Wu SZ, Niu LG et al (2010) High numerical aperture microlens arrays of close packing. Appl Phys Lett 97(3):031109-3

    Google Scholar 

  13. Koudriachov V, Cheong WC, Yu WX et al (2002) High sensitive SiO2/TiO2 hybrid sol-gel material for fabrication of 3 dimensional continuous surface relief diffractive optical elements by electron-beam lithography. Opt Express 10(14):586–590

    Article  Google Scholar 

  14. Kuo WK, Kuo GF, Lin SY et al (2015) Fabrication and characterization of artificial miniaturized insect compound eyes for imaging. Bioinspir Biomim 10(5):056010

    Article  Google Scholar 

  15. Kuo WK, Hsu JJ, Nien CK et al (2016) Moth-eye-inspired biophotonic surfaces with antireflective and hydrophobic characteristics. ACS Appl Mater Interfaces 8(46):32021–32030

    Article  Google Scholar 

  16. Kuo WK, Lin SY, Hsu SW et al (2017) Fabrication and investigation of the bionic curved visual microlens array films. Opt Mater 66:630–639

    Article  Google Scholar 

  17. Yi AY, Li L (2005) Design and fabrication of a microlens array by use of a slow tool servo. Opt Lett 30(13):1707–1709

    Article  Google Scholar 

  18. Yu DP, Hong GS, Wong YS (2012) Profile error compensation in fast tool servo diamond turning of micro-structured surfaces. Int J Mach Tool Manuf 52(1):13–23

    Article  Google Scholar 

  19. Yan J, Zhang Z, Kuriyagawa T et al (2010) Fabricating micro-structured surface by using single-crystalline diamond end mill. Int J Adv Manuf Technol 51(9–12):957–964

    Article  Google Scholar 

  20. Sumitomo T, Huang H, Zhou L (2011) Deformation and material removal in a nanoscale multi-layer thin film solar panel using nanoscratch. Int J Mach Tool Manuf 51(3):182–189

    Article  Google Scholar 

  21. Arif M, Zhang X, Rahman M et al (2013) A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials. Int J Mach Tool Manuf 64(4):114–122

    Article  Google Scholar 

  22. Morris JC, Callahan DL, Kulik J et al (1995) Origins of the ductile regime in single-point diamond turning of semiconductors. J Am Ceram Soc 78(8):2015–2020

    Article  Google Scholar 

  23. Puttick KE, Rudman MR, Smith KJ et al (1989) Single-point diamond machining of glasses. Proc R Soc Lond 426(1870):19–30

    Article  Google Scholar 

  24. Blake PN, Scattergood RO (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73(4):949–957

    Article  Google Scholar 

  25. Sreejith PS, Ngoi BKA (2001) Material removal mechanisms in precision machining of new materials. Int J Mach Tool Manuf 41(12):1831–1843

    Article  Google Scholar 

  26. Shaw MC (1995) Precision finishing. CIRP Ann Manuf Technol 44(1):343–348

    Article  Google Scholar 

  27. Arai S, Wilson SA, Corbett J et al (2009) Ultra-precision grinding of PZT ceramics—surface integrity control and tooling design. Int J Mach Tool Manuf 49(12–13):998–1007

    Article  Google Scholar 

  28. Chen WK, Kuriyagawa T, Huang H et al (2005) Machining of micro aspherical mould inserts. Precis Eng 29(3):315–323

    Article  Google Scholar 

  29. Zhong Z, Venkatesh VC (1995) Semi-ductile grinding and polishing of ophthalmic aspherics and spherics. CIRP Ann Manuf Technol 44(1):339–342

    Article  Google Scholar 

  30. Yin L, Spowage AC, Ramesh K et al (2004) Influence of microstructure on ultraprecision grinding of cemented carbides. Int J Mach Tool Manuf 44(5):533–543

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Basic Research Program of China (Grant No. 2015CB059900) and the National Natural Science Foundation of China (Grant No. 51775046). The authors would also like to acknowledge the support from the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 151052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Feng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, TF., Ruan, BS., Zhou, J. et al. Mechanism of brittle fracture in diamond turning of microlens array on polymethyl methacrylate. Adv. Manuf. 7, 228–237 (2019). https://doi.org/10.1007/s40436-019-00260-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-019-00260-7

Keywords

Navigation