Skip to main content
Log in

Spark plasma sintering of aluminium composites—a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Monolithic aluminium alloy lacks adequate mechanical and tribological properties necessary for optimal functionality in the industry. As a consequence, industrialists and manufacturers have experienced its frequent failures in service. This has necessitated the switch to Al matrix composites which possess better mechanical and tribological characteristics. Sintering has been one of the best fabrication methods of Al composites. However, for the fact that global cost of energy has risen tremendously, the conventional sintering has been replaced by much cheaper, unconventional sintering known as spark plasma sintering (SPS). Its popularity stems from its low energy consumption, short sintering time, and superior properties of products. In this paper, the progress made in the consolidation of aluminium matrix composites (AMCs) using spark plasma sintering, its prospects, and properties of their products were reviewed. Also, powder blending methods applied in SPS were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article

References

  1. Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R Rep 23(2):41–100

    Article  Google Scholar 

  2. Anderson K et al (1999) Surface oxide debonding in field assisted powder sintering. Mater Sci Eng A 270(2):278–282

    Article  Google Scholar 

  3. Groza JR, Zavaliangos A (2000) Sintering activation by external electrical field. Mater Sci Eng A 287(2):171–177

    Article  Google Scholar 

  4. Raichenko A, Burenkov G, Leshchinsky V (1973) Theoretical analysis of the elementary act of electric discharge sintering. Phys Sinter 5:2–2

    Google Scholar 

  5. Thomson K et al (2012) Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. Acta Mater 60(2):622–632

    Article  Google Scholar 

  6. Ujah C, Popoola O, Aigbodion V (2019) Optimisation of spark plasma sintering parameters of Al-CNTs-Nb nano-composite using Taguchi Design of Experiment. Int J Adv Manuf Technol 100(5-8):1563–1573

    Article  Google Scholar 

  7. Li JF, Wang K, Zhang BP, Zhang LM (2006) Ferroelectric and piezoelectric properties of fine-grained Na0. 5K0. 5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89(2):706–709

    Article  Google Scholar 

  8. Heng W et al (2006) High-performance Ag {sub 0.8} Pb {sub 18+ x} SbTe {sub 20} thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl Phys Lett 88:9

    Google Scholar 

  9. Saheb N (2013) Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int J Miner Metall Mater 20(2):152–159

    Article  Google Scholar 

  10. Delaizir G, Bernard-Granger G, Monnier J, Grodzki R, Kim-Hak O, Szkutnik PD, Soulier M, Saunier S, Goeuriot D, Rouleau O, Simon J, Godart C, Navone C (2012) A comparative study of spark plasma sintering (SPS), hot isostatic pressing (hip) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater Res Bull 47(8):1954–1960

    Article  Google Scholar 

  11. Conrad H (2002) Thermally activated plastic flow of metals and ceramics with an electric field or current. Mater Sci Eng A 322(1-2):100–107

    Article  Google Scholar 

  12. Research. Powder Metallurgy. 2018 [cited 2019 23/04/2019]; Available from: https://www.google.com/search?q=Images+of+spark+plasma+sintering+machine+operation&tbm=isch&source=iu&ictx=1&fir=FA7NmlvGDe-OvM%253A%252C4xSNh7r-kYRE6M%252C_&vet=1&usg=AI4_-kTWucp2eH0bmbsMrI3m15ijPKKqKg&sa=X&ved=2ahUKEwi3hZ-k9OXhAhVsQRUIHVZiCZsQ9QEwBHoECAkQDA#imgdii=rmI7Llbs890xfM:&imgrc=qj_JxIfkBkjjVM:&vet=1.

  13. Ujah C et al (2019) Enhanced mechanical, electrical and corrosion characteristics of Al-CNTs-Nb composite processed via spark plasma sintering for conductor core. J Compos Mater:0021998319848055

  14. Ujah C, Popoola O, Aigbodion V (2019) Enhanced tribology, thermal and electrical properties of Al-CNT composite processed via spark plasma sintering for transmission conductor. J Mater Sci 54(22):14064–14073

    Article  Google Scholar 

  15. Ujah C, Popoola O, Aigbodion V (2018) Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al-Nb nanocomposite. Int J Adv Manuf Technol 101:2275–2282

    Article  Google Scholar 

  16. Oladijo O, Ujah C, Namoshe M (2019) Dataset of spark plasma sintering of AlZnSn alloy for soft solder application. Data brief 24:103948

    Article  Google Scholar 

  17. Ujah C, Popoola O, Aigbodion V (2020) Influence of CNTs addition on the mechanical, microstructural, and corrosion properties of Al alloy using spark plasma sintering technique. Int J Adv Manuf Technol 106(7-8):2961–2969

    Article  Google Scholar 

  18. Ujah CO, Popoola P, Popoola O, Aigbodion V (2019) Modification of Al alloy nanopowder with Nb nanopowder on its thermal and tribological properties with SPS for power conductors. Mater Res Expr 6(11):116592

    Article  Google Scholar 

  19. Chieh K et al (2009) The influences of powder mixing process on the quality of W-cu composites. J Trans Can Soc Mech Eng 33:3

    Google Scholar 

  20. POPOOLA P et al (2020) Improving tribological and thermal properties of Al alloy using CNTs and Nb nanopowder via SPS for power transmission conductor. Trans Nonferrous Metals Soc China 30(2):333–343

    Article  Google Scholar 

  21. Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58(4):383–502

    Article  Google Scholar 

  22. Saheb N, Mohammad K (2016) Microstructure and mechanical properties of spark plasma sintered Al2O3-SiC-CNTs hybrid nanocomposites. Ceram Int 42(10):12330–12340

    Article  Google Scholar 

  23. Saheb N, Hayat U, Hassan SF (2019) Recent advances and future prospects in spark plasma sintered alumina hybrid nanocomposites. Nanomaterials 9(11):1607

    Article  Google Scholar 

  24. Ashwath P, Xavior MA (2014) The effect of ball milling & reinforcement percentage on sintered samples of aluminium alloy metal matrix composites. Procedia Eng 97:1027–1032

    Article  Google Scholar 

  25. Han Q, Setchi R, Evans SL (2016) Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol 297:183–192

    Article  Google Scholar 

  26. Nestler D et al (2011) Powder metallurgy of particle-reinforced aluminium matrix composites (AMC) by means of high-energy ball milling. In: Integrated systems, design and technology 2010. Springer, Berlin, pp 93–107

    Chapter  Google Scholar 

  27. Dagasan E, Gercekcioglu E, Unalan S (2018) Characterization of ball milled Al-Al2O3 sub-micron composites. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol

    Google Scholar 

  28. Corrochano J, Lieblich M, Ibáñez J (2011) The effect of ball milling on the microstructure of powder metallurgy aluminium matrix composites reinforced with MoSi2 intermetallic particles. Compos A: Appl Sci Manuf 42(9):1093–1099

    Article  Google Scholar 

  29. Bastwros M, Kim GY, Zhu C, Zhang K, Wang S, Tang X, Wang X (2014) Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos Part B 60:111–118

    Article  Google Scholar 

  30. Sajjadi SP (2005) Sol-gel process and its application in Nanotechnology. J Polym Eng Technol 13:38–41

    Google Scholar 

  31. Rao BG, Mukherjee D, Reddy BM (2017) Novel approaches for preparation of nanoparticles, in Nanostructures for novel therapy. Elsevier, Amsterdam, pp 1–36

    Book  Google Scholar 

  32. Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32(12):3001–3020

    Article  Google Scholar 

  33. Idris J, Nee NNN (2005) The effect of sol-gel technique on the aluminium SiCp composite. Jurnal Mekanikal 2005:19

    Google Scholar 

  34. Amateau M (1976) Progress in the development of graphite-aluminum composites using liquid infiltration technology. J Compos Mater 10(4):279–296

    Article  Google Scholar 

  35. Clement J et al (1990) Interfacial modification in metal matrix composites by the sol-gel process. Mater Manuafact Process 5(1):17–33

    Article  MathSciNet  Google Scholar 

  36. Deborah, D.C., Composite materials: science and applications. Engineering Materials and Processes, 2010.

    Google Scholar 

  37. Štengl V (2012) Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chem Eur J 18(44):14047–14054

    Article  Google Scholar 

  38. Simões S, Viana F, Reis M, Vieira M (2017) Aluminum and nickel matrix composites reinforced by CNTs: dispersion/mixture by ultrasonication. Metals 7(7):279

    Article  Google Scholar 

  39. Thomas S et al (2019) Effect of sonication in enhancing the uniformity of MWCNT distribution in aluminium alloy AA2219 matrix. Mater Today: Proc 18:4058–4066

    Google Scholar 

  40. Javadi A, Mirdamadi S, Faghihisani M, Shakhesi S, Soltani R (2013) Well-dispersion of multi-walled carbon nanotubes in aluminum matrix composites by controlling the mixing process. Fullerenes, Nanotubes Carbon Nanostructures 21(5):436–447

    Article  Google Scholar 

  41. Rais L, Sharma R, Sharma V (2013) Synthesis and structural characterization of Al-CNT metal matrix composite using physical mixing method. IOSR J Appl Phys 5(4):54–57

    Article  Google Scholar 

  42. Maqbool A et al (2014) Synthesis of copper coated carbon nanotubes for aluminium matrix composites. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol

    Google Scholar 

  43. Cha S, Kim KT, Arshad SN, Mo CB, Hong SH (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecularlevel mixing. Adv Mater 17(11):1377–1381

    Article  Google Scholar 

  44. Mohammed SM, Chen DL (2020) Carbon nanotube-reinforced aluminum matrix composites. Adv Eng Mater 22(4):1901176

    Article  Google Scholar 

  45. Kim M et al (2015) Fabrication of Al2O3/AlN micro-composites designed for tailored physical properties. Mater Des 86:1–5

    Article  Google Scholar 

  46. Nam DH, Cha SI, Jeong YJ, Hong SH (2013) Enhanced graphitization of carbon around carbon nanotubes during the formation of carbon nanotube/graphite composites by pyrolysis of carbon nanotube/polyaniline composites. J Nanosci Nanotechnol 13(11):7365–7369

    Article  Google Scholar 

  47. Mohammad K, Saheb N (2016) Molecular level mixing: an approach for synthesis of homogenous hybrid ceramic nanocomposite powders. Powder Technol 291:121–130

    Article  Google Scholar 

  48. Murugesan R, Gopal M, Murali G (2019) Effect of Cu, Ni addition on the CNTs dispersion, wear and thermal expansion behavior of Al-CNT composites by molecular mixing and mechanical alloying. Appl Surf Sci 495:143542

    Article  Google Scholar 

  49. Lal M, Singhal SK, Sharma I, Mathur RB (2013) An alternative improved method for the homogeneous dispersion of CNTs in Cu matrix for the fabrication of Cu/CNTs composites. Appl Nanosci 3(1):29–35

    Article  Google Scholar 

  50. Zhang Z-H, Liu ZF, Lu JF, Shen XB, Wang FC, Wang YD (2014) The sintering mechanism in spark plasma sintering–proof of the occurrence of spark discharge. Scr Mater 81:56–59

    Article  Google Scholar 

  51. Orru R et al (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R Rep 63(4-6):127–287

    Article  Google Scholar 

  52. Saheb N, Iqbal Z, Khalil A, Hakeem AS, al Aqeeli N, Laoui T, al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 2012:1–13

    Article  Google Scholar 

  53. Munir Z, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci 41(3):763–777

    Article  Google Scholar 

  54. Grasso S, Sakka Y, Maizza G (2009) Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008. Sci Technol Adv Mater 10(5):053001

    Article  Google Scholar 

  55. Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60(10):835–838

    Article  Google Scholar 

  56. Guyot P, Rat V, Coudert JF, Jay F, Maître A, Pradeilles N (2012) Does the Branly effect occur in spark plasma sintering? J Phys D Appl Phys 45(9):092001

    Article  Google Scholar 

  57. Chaim R (2016) On densification mechanisms of ceramic particles during spark plasma sintering. Scr Mater 115:84–86

    Article  Google Scholar 

  58. Chakravarty D, Chokshi AH (2014) Direct characterizing of densification mechanisms during spark plasma sintering. J Am Ceram Soc 97(3):765–771

    Article  Google Scholar 

  59. Kieback B (2011) A review of spark plasma sintering. In: Proceedings of the Hagen symposium Hagen Germany

    Google Scholar 

  60. Hitchcock D, Livingston R, Liebenberg D (2015) Improved understanding of the spark plasma sintering process. J Appl Phys 117(17):174505

    Article  Google Scholar 

  61. Aguilar-Elguézabal A, Bocanegra-Bernal M (2014) Fracture behaviour of α-Al2O3 ceramics reinforced with a mixture of single-wall and multi-wall carbon nanotubes. Compos Part B 60:463–470

    Article  Google Scholar 

  62. Yazdani B, Xia Y, Ahmad I, Zhu Y (2015) Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J Eur Ceram Soc 35(1):179–186

    Article  Google Scholar 

  63. KANAMARU M, Tatsuno T, Kusaka T (1992) Hot-pressed Al2O3/SiC whisker/TiC nano-composites. J Ceram Soc Jpn 100(1160):408–412

    Article  Google Scholar 

  64. Yazdani B, Xu F, Ahmad I, Hou X, Xia Y, Zhu Y (2015) Tribological performance of graphene/carbon nanotube hybrid reinforced Al 2 O 3 composites. Sci Rep 5:11579

    Article  Google Scholar 

  65. Michálek M, Sedláček J, Parchoviansky M, Michálková M, Galusek D (2014) Mechanical properties and electrical conductivity of alumina/MWCNT and alumina/zirconia/MWCNT composites. Ceram Int 40(1):1289–1295

    Article  Google Scholar 

  66. Ahmad K, Pan W, Qu Z (2009) Multifunctional properties of alumina composites reinforced by a hybrid filler. Int J Appl Ceram Technol 6(1):80–88

    Article  Google Scholar 

  67. Ivanov R, Hussainova I, Aghayan M, Drozdova M, Pérez-Coll D, Rodríguez MA, Rubio-Marcos F (2015) Graphene-encapsulated aluminium oxide nanofibers as a novel type of nanofillers for electroconductive ceramics. J Eur Ceram Soc 35(14):4017–4021

    Article  Google Scholar 

  68. Mansoor M, Shahid M (2016) Carbon nanotube-reinforced aluminum composite produced by induction melting. Journal of Appl Res Technol 14(4):215–224

    Article  Google Scholar 

  69. Laha T, Chen Y, Lahiri D, Agarwal A (2009) Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos A: Appl Sci Manuf 40(5):589–594

    Article  Google Scholar 

  70. Kurita H, Kwon H, Estili M, Kawasaki A (2011) Multi-walled carbon nanotube-aluminum matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion. Mater Trans 52(10):1960–1965

    Article  Google Scholar 

  71. Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, Rizzo A (2017) Influence of Al 2 O 3 nanoparticles on microstructure and strengthening mechanism of Al-based nanocomposites produced via spark plasma sintering. J Mater Eng Perform 26(6):2928–2936

    Article  Google Scholar 

  72. Dash K, Chaira D, Ray BC (2013) Synthesis and characterization of aluminium–alumina micro-and nano-composites by spark plasma sintering. Mater Res Bull 48(7):2535–2542

    Article  Google Scholar 

  73. Garbiec D, Jurczyk M, Levintant-Zayonts N, Mościcki T (2015) Properties of Al–Al2O3 composites synthesized by spark plasma sintering method. Arch Civil Mechan Eng 15(4):933–939

    Article  Google Scholar 

  74. Vintila R, Charest A, Drew RAL, Brochu M (2011) Synthesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite. Mater Sci Eng A 528(13-14):4395–4407

    Article  Google Scholar 

  75. Morsi K, Esawi AMK, Borah P, Lanka S, Sayed A (2010) Characterization and spark plasma sintering of mechanically milled aluminum-carbon nanotube (CNT) composite powders. J Compos Mater 44(16):1991–2003

    Article  Google Scholar 

  76. Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52(14):8618–8629

    Article  Google Scholar 

  77. Kim I-Y, Lee JH, Lee GS, Baik SH, Kim YJ, Lee YZ (2009) Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions. Wear 267(1-4):593–598

    Article  Google Scholar 

  78. Wu J, Zhang H, Zhang Y, Wang X (2012) Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Mater Des 41:344–348

    Article  Google Scholar 

  79. Wen H, Topping TD, Isheim D, Seidman DN, Lavernia EJ (2013) Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater 61(8):2769–2782

    Article  Google Scholar 

  80. Bisht A, Srivastava M, Kumar RM, Lahiri I, Lahiri D (2017) Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater Sci Eng A 695:20–28

    Article  Google Scholar 

  81. Tian W-M et al (2016) Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int J Miner Metall Mater 23(6):723–729

    Article  Google Scholar 

  82. Bathula S, Anandani RC, Dhar A, Srivastava AK (2012) Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater Sci Eng A 545:97–102

    Article  Google Scholar 

  83. Ghasali E, Pakseresht A, Rahbari A, Eslami-shahed H, Alizadeh M, Ebadzadeh T (2016) Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al–SiC–TiC composites. J Alloys Compd 666:366–371

    Article  Google Scholar 

  84. Babu NK, Kallip K, Leparoux M, AlOgab KA, Maeder X, Dasilva YAR (2016) Influence of microstructure and strengthening mechanism of AlMg5–Al2O3 nanocomposites prepared via spark plasma sintering. Mater Des 95:534–544

    Article  Google Scholar 

  85. Ghasali E, Pakseresht AH, Alizadeh M, Shirvanimoghaddam K, Ebadzadeh T (2016) Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering. J Alloys Compd 688:527–533

    Article  Google Scholar 

  86. Cardinal S, Pelletier JM, Qiao JC, Bonnefont G, Xie G (2016) Influence of spark plasma sintering parameters on the mechanical properties of Cu50Zr45Al5 bulk metallic glass obtained using metallic glass powder. Mater Sci Eng A 677:116–124

    Article  Google Scholar 

  87. Liao J-Z, Tan M-J, Sridhar I (2010) Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater Des 31:S96–S100

    Article  Google Scholar 

  88. Kostecki M et al (2017) Tribological properties of aluminium alloy composites reinforced with multi-layer graphene—the influence of spark plasma texturing process. Materials 10(8):928

    Article  Google Scholar 

  89. Wang W, Han Z, Wang Q, Wei B, Xin S, Gao Y (2020) Tribological properties of Ti2AlNb matrix composites containing few-layer graphene fabricated by spark plasma sintering. Metals 10(7):924

    Article  Google Scholar 

  90. Manikandan P, Sieh R, Elayaperumal A, le HR, Basu S (2016) Micro/nanostructure and tribological characteristics of pressureless sintered carbon nanotubes reinforced aluminium matrix composites. J Nanomater 2016:1–10

    Article  Google Scholar 

  91. Yang K, An L, Cheng L (2019) Microstructure and tribological behavior of Al 2 O 3 particle reinforced al matrix composites fabricated by spark plasma sintering. J Wuhan Univ Technol-Mater Sci Ed 34(5):1013–1017

    Article  Google Scholar 

  92. Srivyas P, Charoo M (2019) Effect of sintering temperature and reinforcement Concentration on the tribological behaviors of hybrid aluminum matrix nano composite. Tribol Industry 2019:41

    Google Scholar 

  93. Aliyu I, Saheb N, Hassan S, al-Aqeeli N (2015) Microstructure and properties of spark plasma sintered aluminum containing 1 wt.% SiC nanoparticles. Metals 5(1):70–83

    Article  Google Scholar 

  94. Ghahremani D, Ebadzadeh T, Maghsodipour A (2015) Spark plasma sintering of mullite: relation between microstructure, properties and spark plasma sintering (SPS) parameters. Ceram Int 41(5):6409–6416

    Article  Google Scholar 

  95. Gu, P., et al., n.d. Fabrication of carbon nanotube-TiC nanocomposites by spark plasma sintering.

  96. Yamaoglu R, Olevsky EA (2016) Consolidation of Al-nanoSiC composites by spark plasma sintering. Int J Mater Mechan Manufact 4(2):119–122

    Google Scholar 

  97. Dudina D, Bokhonov B, Mukherjee A (2016) Formation of aluminum particles with shell morphology during pressureless spark plasma sintering of Fe–Al mixtures: current-related or Kirkendall effect? Materials 9(5):375

    Article  Google Scholar 

  98. Razavi M, Farajipour AR, Zakeri M, Rahimipour MR, Firouzbakht AR (2017) Production of Al2O3–SiC nano-composites by spark plasma sintering. Boletín de la Sociedad Española de Cerámica y Vidrio 56(4):186–194

    Article  Google Scholar 

  99. Housaer F, Beclin F, Touzin M, Tingaud D, Legris A, Addad A (2015) Interfacial characterization in carbon nanotube reinforced aluminum matrix composites. Mater Charact 110:94–101

    Article  Google Scholar 

  100. Kasperski A, Weibel A, Alkattan D, Estournès C, Laurent C, Peigney A (2015) Double-walled carbon nanotube/zirconia composites: preparation by spark plasma sintering, electrical conductivity and mechanical properties. Ceram Int 41(10):13731–13738

    Article  Google Scholar 

  101. Chen B, Kondoh K (2016) Sintering behaviors of carbon nanotubes—aluminum composite powders. Metals 6(9):213

    Article  Google Scholar 

  102. Bunakov N et al (2016) Fabrication of multi-walled carbon nanotubes–aluminum matrix composite by powder metallurgy technique. Results in physics 6:231–232

    Article  Google Scholar 

  103. Guo B, Song M, Yi J, Ni S, Shen T, du Y (2017) Improving the mechanical properties of carbon nanotubes reinforced pure aluminum matrix composites by achieving non-equilibrium interface. Mater Des 120:56–65

    Article  Google Scholar 

  104. Maiti A, Laha T (2018) Study of distribution of carbon nanotube in Al-CNT nanocomposite synthesized via spark-plasma sintering. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol

    Google Scholar 

  105. Singh LK, Bhadauria A, Laha T (2018) Al-MWCNT nanocomposite synthesized via spark plasma sintering: effect of powder milling and reinforcement addition on sintering kinetics and mechanical properties. J Mater Res Technol 8:503–512

    Article  Google Scholar 

  106. Ujah C, Popoola O, Aigbodion V Enhanced tribology, thermal and electrical properties of Al-CNT composite processed via spark plasma sintering for transmission conductor. J Mater Sci 54:1–10

  107. Singh LK, Bhadauria A, Oraon A, Laha T (2019) Spark plasma sintered Al-0.5 wt% MWCNT nanocomposite: effect of sintering pressure on the densification behavior and multi-scale mechanical properties. Diam Relat Mater 91:144–155

    Article  Google Scholar 

  108. Sadeghi B, Cavaliere P, Perrone A (2018) Effect of Al2O3, SiO2 and carbon nanotubes on the microstructural and mechanical behavior of spark plasma sintered aluminum based nanocomposites. Part Sci Technol:1–8

  109. So KP, Kushima A, Park JG, Liu X, Keum DH, Jeong HY, Yao F, Joo SH, Kim HS, Kim H, Li J, Lee YH (2018) Intragranular dispersion of carbon nanotubes comprehensively improves aluminum alloys. Adv Sci 5(7):1800115

    Article  Google Scholar 

  110. Thomas S, Umasankar V (2018) Effect of MWCNT reinforcement on the precipitation-hardening behavior of AA2219. Int J Miner Metall Mater 25(1):53–61

    Article  Google Scholar 

  111. Sairam K, Sonber JK, Murthy TSRC, Subramanian C, Fotedar RK, Nanekar P, Hubli RC (2014) Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide. Int J Refract Met Hard Mater 42:185–192

    Article  Google Scholar 

  112. Ameri S, Sadeghian Z, Kazeminezhad I (2016) Effect of CNT addition approach on the microstructure and properties of NiAl-CNT nanocomposites produced by mechanical alloying and spark plasma sintering. Intermetallics 76:41–48

    Article  Google Scholar 

  113. Yan Y, Zhang H, Fan J, Wang L, Zhang Q, Hou M, Dong H, Xu B (2016) Improved mechanical properties of Mg matrix composites reinforced with Al and carbon nanotubes fabricated by spark plasma sintering followed by hot extrusion. J Mater Res 31(23):3745–3756

    Article  Google Scholar 

  114. Wang J, Wang Y, Liu Y, Li J, He L, Zhang C (2015) Densification and microstructural evolution of a high niobium containing TiAl alloy consolidated by spark plasma sintering. Intermetallics 64:70–77

    Article  Google Scholar 

  115. Wang D, Yuan H, Qiang J (2017) The microstructure evolution, mechanical properties and densification mechanism of TiAl-based alloys prepared by spark plasma sintering. Metals 7(6):201

    Article  Google Scholar 

Download references

Acknowledgements

The authors hereby appreciates and acknowledge the Africa Centre of Excellence for Sustainable Power and Energy Development, ACE-SPED, University of Nigeria, Nsukka, and the Faculty of Engineering and Built Environment, University of Johannesburg, Auckland Park, South Africa, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aigbodion Victor Sunday.

Ethics declarations

Ethical approval

This work does not include human and animal; hence, ethical approval from any committee is not required.

Consent to participate

This work does not include human and animal; hence, consent to participate in the research is not required.

Consent to publish

The authors give the publisher the consent to publish the work.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliver, U.C., Sunday, A.V., Christain, E.IE.I. et al. Spark plasma sintering of aluminium composites—a review. Int J Adv Manuf Technol 112, 1819–1839 (2021). https://doi.org/10.1007/s00170-020-06480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06480-7

Keywords

Navigation