Skip to main content
Log in

Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sintering (SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide (Al4C3) is not formed during SPS processing. Further addition of graphene (above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Rafiee, J. Rafiee, Z. Wang, H.H. Song, Z.Z. Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3(2009), No. 12, p. 3884.

    Article  Google Scholar 

  2. Y.X. Tang, X.M. Yang, R.R. Wang, and M.X. Li, Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids, Mater. Sci. Eng. A, 599(2014), p. 247.

    Article  Google Scholar 

  3. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8(2008), No. 3, p. 902.

    Article  Google Scholar 

  4. S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, Graphene-aluminum nanocomposites, Mater. Sci. Eng. A, 528(2011), No. 27, p. 7933.

    Article  Google Scholar 

  5. R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, and R. Martínez-Sánchez, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying, J. Alloys Compd., 615(2014), Suppl 1, p. S578.

    Article  Google Scholar 

  6. J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, and S.L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Mater. Sci. Eng. A, 626(2015), p. 400.

    Article  Google Scholar 

  7. M. Rashad, F.S. Pan, A.T. Tang, M. Asif, and M. Aamir, Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium, J. Alloys Compd., 603(2014), p. 111.

    Article  Google Scholar 

  8. C. Jeon, Y. Jeong, J. Seo, H.N. Tien, S. Hong, Y. Yum, S. Hur, and K. Lee, Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing, Int. J. Precis. Eng. Manuf., 15(2014), No. 6, p. 1235.

    Article  Google Scholar 

  9. B. Lee, M.Y. Koo, S.H. Jin, K.T. Kim, and S.H. Hong, Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process, Carbon, 78(2014), p. 212.

    Article  Google Scholar 

  10. J. Dutkiewicz, P. Ozga, W. Maziarz, J. Pstrus, B. Kania, P. Bobrowski, and J. Stolarska, Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets, Mater. Sci. Eng. A, 628(2015), p. 124.

    Article  Google Scholar 

  11. Y. Chang, D. Huang, C. Jia, Z. Cui, C. Wang, and D. Liang, Influence of plasma on the densification mechanism of SPS under multi-field effect, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 906.

    Article  Google Scholar 

  12. J.H. Nie, C.C. Jia, N. Shi, Y.F. Zhang, Y. Li, and X. Jia, Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes, Int. J. Miner. Metall. Mater., 18(2011), No. 6, p. 695.

    Article  Google Scholar 

  13. M. Bastwros, G. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, and X. Wang, Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering, Compos. Part B, 60(2014), p. 111.

    Article  Google Scholar 

  14. M. Fattahi, A.R. Gholami, A. Eynalvandpour, E. Ahmadi, Y. Fattahi, and S. Akhavan, Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires, Micron, 64(2014), p. 20.

    Article  Google Scholar 

  15. L.Y. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J.Q. Xu, H. Choi, H.F. Xu, F.E. Pfefferkorn, and X.C. Li, Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites, Scripta Mater., 67(2012), No. 1, p. 29.

    Article  Google Scholar 

  16. Y. Li, W. Liu, V. Ortalan, W.F. Li, Z. Zhang, R. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung, HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C processed via cryomilling, Acta Mater., 58(2010), No. 5, p. 1732.

    Article  Google Scholar 

  17. H.G.P. Kumar and M.A. Xavior, Graphene reinforced metal matrix composite (GRMMC): a review, Procedia Eng., 97(2014), p. 1033.

    Article  Google Scholar 

  18. X. Jiang, M. Galano, and F. Audebert, Extrusion textures in Al, 6061 alloy and 6061/SiCp nanocomposites, Mater. Charact., 88(2014), p. 111.

    Article  Google Scholar 

  19. A.J. Knowles, X. Jiang, M. Galano, and F. Audebert, Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles, J. Alloys Compd., 615(2014), Suppl 1, p. S401.

    Article  Google Scholar 

  20. V. Umasankar, M. Anthony Xavior, and S. Karthikeyan, Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminium alloy matrix composite by powder processing, J. Alloys Compd., 582(2014), p. 380.

    Article  Google Scholar 

  21. R. Abhik, V. Umasankar, and M.A. Xavior, Evaluation of properties for Al-SiC reinforced metal matrix composite for brake pads, Procedia Eng., 97(2014), p. 941.

    Article  Google Scholar 

  22. P. Gao, C.C. Jia, W.B. Cao, C.C. Wang, D. Liang, and G.L. Xu, Dielectric properties of spark plasma sintered AlN/SiC composite ceramics, Int. J. Miner. Metall. Mater., 21(2014), No. 6, p. 589.

    Article  Google Scholar 

  23. L.H. Liu, F. Li, N. Chen, H.M. Qiu, G.H. Cao, and Y. Li, Influence of sintering temperature on the thermoelectric properties of Ba8Ga16Si30 clathrate treated by spark plasma sintering, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 78.

    Article  Google Scholar 

  24. A. Atrian, G.H. Majzoobi, M.H. Enayati, and H. Bakhtiari, Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction, Int. J. Miner. Metall. Mater., 21(2014), No. 3, p. 295.

    Article  Google Scholar 

  25. N. Saheb, Spark plasma and microwave sintering of Al6061 and Al2124 alloys, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 152.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-mei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Wm., Li, Sm., Wang, B. et al. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int J Miner Metall Mater 23, 723–729 (2016). https://doi.org/10.1007/s12613-016-1286-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1286-0

Keywords

Navigation