Skip to main content
Log in

Micromilling research: current trends and future prospects

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micro-milling through mechanical chip removal process has attracted much attention among researchers due to its flexibility and productivity that allow an extensive application for manufacturing several types of micro-components for the modern-day world. Its potential is continuously growing as the market demands continuous innovation in the manufacturing of high precision products with progressively smaller dimensions. Its global research and available literature increased very fast in recent years. Relevant topics like size effect, burr formation, surface quality, cutting forces, tool wear, vibrations, and process optimization as highlighted by a systematic bibliometric study during the period 2000–2019 must be properly addressed. The review work on such a scale was not attempted earlier by considering many parameters at a time. Hence, this study may provide a current view and future prospects of mainstream research on micro-milling worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Afazov S, Ratchev S, Segal J (2010) Modelling and simulation of micro-milling cutting forces. Journal of Materials Processing Technology 210(15):2154–2162. https://doi.org/10.1016/j.jmatprotec.2010.07.033

    Article  Google Scholar 

  2. Afazov S M, Zdebski D, Ratchev S M, Segal J, Liu S (2013) Effects of micro-milling conditions on the cutting forces and process stability. J Mater Process Technol 213(5):671–684. https://doi.org/10.1016/j.jmatprotec.2012.12.001

    Article  Google Scholar 

  3. Aly M, Ng E, Veldhuis S, Elbestawi M (2006) Prediction of cutting forces in the micro-machining of silicon using a “hybrid molecular dynamic-finite element analysis” force model. Int J Mach Tools Manuf 46(14):1727–1739. https://doi.org/10.1016/j.ijmachtools.2005.12.008

    Article  Google Scholar 

  4. Annoni M, Biella G, Rebaioli L, Semeraro Q (2013) Microcutting force prediction by means of a slip-line field force model. Procedia CIRP 8:558–563. https://doi.org/10.1016/j.procir.2013.06.150

    Article  Google Scholar 

  5. Aramcharoen A, Mativenga P (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33(4):402–407. https://doi.org/10.1016/j.precisioneng.2008.11.002

    Article  Google Scholar 

  6. Aramcharoen A, Mativenga PT, Yang S, Cooke KE, Teer DG (2008) Evaluation and selection of hard coatings for micro milling of hardened tool steel. Int J Mach Tools Manuf 48(14):1578–1584. https://doi.org/10.1016/j.ijmachtools.2008.05.011

    Article  Google Scholar 

  7. Arrazola P, Özel T, Umbrello D, Davies M, Jawahir I (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62(2):695–718. https://doi.org/10.1016/j.cirp.2013.05.006

    Article  Google Scholar 

  8. Aslantas K, Kaynak Y (2019) Micro milling of niti shape memory alloy and determination of critical chip thickness. J Fac Eng Archit Gazi Univ 34(3):1202–1211

    Google Scholar 

  9. Aslantas K, Hopa HE, Percin M, Ucun I, Cicek A (2016) Cutting performance of nano-crystalline diamond (ncd) coating in micro-milling of ti6al4v alloy. Precis Eng - Journal of The International Societies For Precis Eng And Nanotechnology 45:55–66. https://doi.org/10.1016/j.precisioneng.2016.01.009

    Article  Google Scholar 

  10. Aslantas K, Ekici E, Cicek A (2018) Optimization of process parameters for micro milling of ti-6al-4v alloy using taguchi-based gray relational analysis. Measurement 128:419–427. https://doi.org/10.1016/j.measurement.2018.06.066

    Article  Google Scholar 

  11. Aurich J C, Bohley M, Reichenbach I G, Kirsch B (2017) Surface quality in micro milling: Influences of spindle and cutting parameters. CIRP Ann Manuf Technol 66(1):101–104. 10.1016/j.cirp.2017.04.029

    Article  Google Scholar 

  12. Bao W, Tansel I (2000) Modeling micro-end-milling operations. part i: analytical cutting force model. Int J Mach Tools Manuf 40(15):2155–2173. https://doi.org/10.1016/S0890-6955(00)00054-7

    Article  Google Scholar 

  13. Bao W, Tansel I (2000) Modeling micro-end-milling operations. part ii: tool run-out. Int J Mach Tools Manuf 40(15):2175–2192. https://doi.org/10.1016/S0890-6955(00)00055-9

    Article  Google Scholar 

  14. Bao W, Tansel I (2000) Modeling micro-end-milling operations. part iii: influence of tool wear. Int J Mach Tools Manuf 40(15):2193–2211. https://doi.org/10.1016/S0890-6955(00)00056-0

    Article  Google Scholar 

  15. Berestovskyi D, Hung WNP, Lomeli P (2014) Surface finish of ball-end milled microchannels. J Micro Nanomanuf 2(4):041005–041005–10. https://doi.org/10.1115/1.4028502

    Article  Google Scholar 

  16. Bissacco G, Hansen H, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Annals - Manufacturing Technology 57 (1):113–116. https://doi.org/10.1016/j.cirp.2008.03.085

    Article  Google Scholar 

  17. Bonaiti G, Parenti P, Annoni M, Kapoor S (2017) Micro-milling Machinability of DED Additive Titanium Ti-6Al-4V. Procedia Manufacturing 10:497–509. https://doi.org/10.1016/j.promfg.2017.07.104

    Article  Google Scholar 

  18. Boswell B, Islam M N, Davies I J (2018) A review of micro-mechanical cutting. Int J Adv Manuf Technol 94(1):789–806

    Article  Google Scholar 

  19. Budak E, Ozlu E, Bakioglu H, Barzegar Z (2016) Thermo-mechanical modeling of the third deformation zone in machining for prediction of cutting forces. CIRP Annals - Manufacturing Technology 65 (1):121–124 . https://doi.org/10.1016/j.cirp.2016.04.110

    Article  Google Scholar 

  20. Buttner H, Vieira G, Hajri M, Voglin M, Kuster F, Stirnimann J, Wegener K (2019) A comparison between micro milling pure copper and tungsten reinforced copper for electrodes in edm applications. Precis Eng - Journal of the International Societies for Precis Eng and Nanotechnology 60:326– 339

    Google Scholar 

  21. Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. CIRP Annals - Manufacturing Technology 52(2):483–507. https://doi.org/10.1016/S0007-8506(07)60200-5

    Article  Google Scholar 

  22. Câmara M, Rubio JC, Ābrao AA, Davim J (2012) State of the art on micromilling of materials, a review. J Mater Sci Technol 28(8):673–685. https://doi.org/10.1016/S1005-0302(12)60115-7

    Article  Google Scholar 

  23. Camara MA, Abrao AM, Campos Rubio JC, Godoy GCD, Cordeiro BS (2016) Determination of the critical undeformed chip thickness in micromilling by means of the acoustic emission signal. Precis Eng 46:377–382. https://doi.org/10.1016/j.precisioneng.2016.06.007

    Article  Google Scholar 

  24. Cao Z, Li H (2015) Investigation of machining stability in micro milling considering the parameter uncertainty. Adv Mech Eng 7(3):168781401557598. https://doi.org/10.1177/1687814015575982

    Article  Google Scholar 

  25. Cardoso P, Davim J P (2010) Optimization of surface roughness in micromilling. Mater Manuf Process 25(10):1115–1119. https://doi.org/10.1080/10426914.2010.481002

    Article  Google Scholar 

  26. Chae J, Park S, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46(3–4):313–332. https://doi.org/10.1016/j.ijmachtools.2005.05.015

    Article  Google Scholar 

  27. Chavoshi S Z, Luo X (2015) Hybrid micro-machining processes: A review. Precis Eng 41:1–23. https://doi.org/10.1016/j.precisioneng.2015.03.001

    Article  Google Scholar 

  28. Chen MJ, Ni HB, Wang ZJ, Jiang Y (2012) Research on the modeling of burr formation process in micro-ball end milling operation on Ti-6Al-4V. Int J Adv Manuf Technol 62(9-12):901–912. https://doi.org/10.1007/s00170-011-3865-6

    Article  Google Scholar 

  29. Chen P C, Pan C W, Lee W C, Li K M (2014) Optimization of micromilling microchannels on a polycarbonate substrate. Int J Precis Eng Manuf 15(1):149–154. https://doi.org/10.1007/s12541-013-0318-1

    Article  Google Scholar 

  30. Chen P C, Chen Y C, Pan C W, Li K M (2015) Parameter optimization of micromilling brass mold inserts for microchannels with taguchi method. Int J Precis Eng Manuf 16(4):647–651. https://doi.org/10.1007/s12541-015-0086-1

    Article  Google Scholar 

  31. Chen W, Huo D, Teng X, Sun Y (2017) Surface generation modelling for micro end milling considering the minimum chip thickness and tool runout. Procedia CIRP 58:364–369. https://doi.org/10.1016/j.procir.2017.03.237

    Article  Google Scholar 

  32. Chen W, Teng X, Huo D, Wang Q (2017) An improved cutting force model for micro milling considering machining dynamics. Int J Adv Manuf Technol 1–12. https://doi.org/10.1007/s00170-017-0706-2

  33. Cheng J, Jin Y, Wu J, Wen X, Gong Y, Shi J, Cai G (2016) Experimental study on a novel minimization method of top burr formation in micro-end milling of ti-6al-4v. Int J Adv Manuf Technol 86:2197–2217. https://doi.org/10.1007/s00170-015-8312-7

    Article  Google Scholar 

  34. Cheng K, Huo D (2013) Micro-cutting: Fundamentals and applications. Wiley, Hoboken. https://doi.org/10.1002/9781118536605

    Book  Google Scholar 

  35. Chern G L (2006) Experimental observation and analysis of burr formation mechanisms in face milling of aluminum alloys. Int J Mach Tools Manuf 46(12-13):1517–1525. https://doi.org/10.1016/j.ijmachtools.2005.09.006

    Article  Google Scholar 

  36. Cobo M, López-Herrera A, Herrera-Viedma E, Herrera F (2011) Science mapping software tools: Review, analysis, and cooperative study among tools. J Am Soc Inf Sci Technol 62(7):1382–1402. https://doi.org/10.1002/asi.21525

    Article  Google Scholar 

  37. Davoudinejad A, Tosello G, Parenti P, Annoni M (2017) 3d finite element simulation of micro end-milling by considering the effect of tool run-out. Micromachines 8(6) https://doi.org/10.3390/mi8060187

  38. Diez-Cifuentes E, Pérez-García H, Guzmán-Villasenor M, Vizán-Idoipe A (2010) Dynamic analysis of runout correction in milling. Int J Mach Tools Manuf 50(8):709–717. https://doi.org/10.1016/j.ijmachtools.2010.04.010

    Article  Google Scholar 

  39. Dimov S, Matthews C, Glanfield A, Dorrington P (2006) A roadmapping study in multi-material micro manufacture. In: Menz W, Dimov S, Fillon B (eds) 4M 2006 - Second international conference on multi-material micro manufacture. Elsevier, Oxford, pp xi – xxv, DOI https://doi.org/10.1016/B978-008045263-0/50001-5, (to appear in print)

  40. Ding H, Chen SJ, Cheng K (2011) Dynamic surface generation modeling of two-dimensional vibration-assisted micro-end-milling. Int J Adv Manuf Technol 53(9-12):1075–1079. https://doi.org/10.1007/s00170-010-2903-0

    Article  Google Scholar 

  41. Ducobu F, Filippi E, Rivière-Lorphèvre E (2009) Chip formation and minimum chip thickness in micro-milling. Proceedings of the 12th CIRP Conference on Modeling of Machining Operations 1:339–346

    Google Scholar 

  42. Abdelrahman Elkaseer A. M., Dimov S. S., Popov K. B., Minev R. M. (2014) Tool wear in micro-endmilling: Material microstructure effects, modeling, and experimental validation. J Micro Nanomanuf 2(4):044502–044502–10. https://doi.org/10.1115/1.4028077

    Article  Google Scholar 

  43. Ervine P, O’Donnell G E, Walsh B (2015) Fundamental investigations into burr formation and damage mechanisms in the micro-milling of a biomedical grade polymer. Mach Sci Technol 19(1):112–133. https://doi.org/10.1080/10910344.2014.991028

    Article  Google Scholar 

  44. Fang N (2003) Slip-line modeling of machining with a rounded-edge tool - part i: New model and theory. J Mech Phys Solids 51(4):715–742. https://doi.org/10.1016/S0022-5096(02)00060-1

    Article  MATH  Google Scholar 

  45. Fang N (2003) Slip-line modeling of machining with a rounded-edge tool—part ii: analysis of the size effect and the shear strain-rate. J Mech Phys Solids 51(4):743–762. https://doi.org/10.1016/S0022-5096(02)00061-3

    Article  MATH  Google Scholar 

  46. Filiz S, Conley C M, Wasserman M B, Ozdoganlar O B (2007) An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills. Int J Mach Tools Manuf 47 (7–8):1088–1100. https://doi.org/10.1016/j.ijmachtools.2006.09.024

    Article  Google Scholar 

  47. Germain D, Fromentin G, Poulachon G, Bissey-Breton S (2013) From large-scale to micromachining: A review of force prediction models. J Manuf Process 15(3):389–401. https://doi.org/10.1016/j.jmapro.2013.02.006

    Article  Google Scholar 

  48. Glänzel W (2012) Bibliometric methods for detecting and analysing emerging research topics. El profesional de la información 21(1):194–201

    Article  Google Scholar 

  49. Graham E, Mehrpouya M, Nagamune R, Park SS (2014) Robust prediction of chatter stability in micro milling comparing edge theorem and LMI. CIRP J Manuf Sci Technol 7(1):29–39. https://doi.org/10.1016/j.cirpj.2013.09.002

    Article  Google Scholar 

  50. Guckenberger D J, de Groot T E, Wan A M D, Beebe D J, Young E W K (2015) Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15:2364–2378. https://doi.org/10.1039/C5LC00234F

    Article  Google Scholar 

  51. Guo X, Zhang X, Liu Z, Zhang D, Jin Z, Guo D (2014) Modelling the effects of tool edge radius on micro machining based on smooth particle hydrodynamics simulation method. Int J Mach Mach Mater 16(3-4):303–317. https://doi.org/10.1504/IJMMM.2014.067310

    Article  Google Scholar 

  52. Hashimura M, Hassamontr J, Dornfeld D A (1999) Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation. J Manuf Sci Eng 121(1):13. https://doi.org/10.1115/1.2830566

    Article  Google Scholar 

  53. Hashmi S (2014) Comprehensive Materials Processing. Elsevier Science

  54. Hassanpour H, Sadeghi M H, Rezaei H, Rasti A (2016) Experimental study of cutting force, microhardness, surface roughness, and burr size on micromilling of ti6al4v in minimum quantity lubrication. Mater Manuf Process 31(13):1654–1662. https://doi.org/10.1080/10426914.2015.1117629

    Article  Google Scholar 

  55. Horsch C, Schulze V, Loehe D (2006) Deburring and surface conditioning of micro milled structures by micro peening and ultrasonic wet peening. Microsystem Technologies – Micro and Nanosystems - Information Storage and Processing Systems 12(7):691–696

    Google Scholar 

  56. Huo D, Lin C, Choong Z J, Pancholi K, Degenaar P (2015) Surface and subsurface characterisation in micro-milling of monocrystalline silicon. Int J Adv Manuf Technol 81(5-8):1319–1331. https://doi.org/10.1007/s00170-015-7308-7

    Article  Google Scholar 

  57. Jain V, Sidpara A, Balasubramaniam R, Lodha G, Dhamgaye V, Shukla R (2014) Micromanufacturing: A review—part i. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 228(9):973–994. https://doi.org/10.1177/0954405414539487

    Article  Google Scholar 

  58. Jin X, Altintas Y (2011) Slip-line field model of micro-cutting process with round tool edge effect. J MaterProcess Technol 211(3):339–355. https://doi.org/10.1016/j.jmatprotec.2010.10.006

    Article  Google Scholar 

  59. Jin X, Altintas Y (2012) Prediction of micro-milling forces with finite element method. J MaterProcess Technol 212(3):542–552. https://doi.org/10.1016/j.jmatprotec.2011.05.020

    Article  Google Scholar 

  60. Jin X, Xie B (2015) Experimental study on surface generation in vibration-assisted micro-milling of glass. Int J Adv Manuf Technol 81(1-4):507–512. https://doi.org/10.1007/s00170-015-7211-2

    Article  Google Scholar 

  61. Jun M B, DeVor R E, Kapoor S G (2006) Investigation of the dynamics of microend milling–part ii: Model validation and interpretation. J Manuf Sci Eng 128(4):901–912. https://doi.org/10.1115/1.2335854

    Article  Google Scholar 

  62. Jun M B, Liu X, DeVor R E, Kapoor S G (2006) Investigation of the dynamics of microend milling–part i: Model development. J Manuf Sci Eng 128(4):893–900. https://doi.org/10.1115/1.2193546

    Article  Google Scholar 

  63. Karpat Y, Ozel T (2005) Predictive analytical and thermal modeling of orthogonal cutting process–part ii: Effect of tool flank wear on tool forces, stresses, and temperature distributions. J Manuf Sci Eng 128 (2):445–453. https://doi.org/10.1115/1.2162591

    Article  Google Scholar 

  64. Khanghah S P, Boozarpoor M, Lotfi M, Teimouri R (2015) Optimization of micro-milling parameters regarding burr size minimization via rsm and simulated annealing algorithm. Trans Indian Inst Metals 68(5):897–910. https://doi.org/10.1007/s12666-015-0525-9

    Article  Google Scholar 

  65. Kim G H, Yoon G S, Lee J W, Kim H K, Cho M W (2012) A study on the micro-endmilling surface prediction model with non-dynamic errors. Int J Precis Eng Manuf 13(11):2035–2041. https://doi.org/10.1007/s12541-012-0268-z

    Article  Google Scholar 

  66. Kiswanto G, Zariatin D L, Ko T J (2014) The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation. J Manuf Process 16(4):435–450

    Article  Google Scholar 

  67. Kizhakken V, Mathew J (2019) Modeling of burr thickness in micro-end milling of ti6al4v. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture 233 (4):1087–1102

    Article  Google Scholar 

  68. Koc M, Ozel T (2011) Micro-manufacturing: Design and manufacturing of micro-products. Wiley, Hoboken

    Book  Google Scholar 

  69. Koklu U, Basmaci G (2017) Evaluation of tool path strategy and cooling condition effects on the cutting force and surface quality in micromilling operations. Metals 7(10):426. https://doi.org/10.3390/met7100426

    Article  Google Scholar 

  70. Krimpenis AA, Fountas NA, Ntalianis I, Vaxevanidis NM (2014) Cnc micromilling properties and optimization using genetic algorithms. Int J Adv Manuf Technol 70(1-4):157–171. https://doi.org/10.1007/s00170-013-5248-7

    Article  Google Scholar 

  71. Kumar SPL, Jerald J, Kumanan S, Aniket N (2014) Process parameters optimization for micro end-milling operation for capp applications. Neural Computing & Applications 25(7-8):1941–1950. https://doi.org/10.1007/s00521-014-1683-0

    Article  Google Scholar 

  72. Kuram E, Ozcelik B (2015) Optimization of machining parameters during micro-milling of ti6al4v titanium alloy and inconel 718 materials using taguchi method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231(2):228–242. https://doi.org/10.1177/0954405415572662

    Article  Google Scholar 

  73. Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48(1):1–14. https://doi.org/10.1016/j.ijmachtools.2007.08.011

    Article  Google Scholar 

  74. Lee DE, Hwang I, Valente CMO, Oliveira JFG, Dornfeld DA (2006) Precision manufacturing process monitoring with acoustic emission. Int J Mach Tools Manuf 46(2):176–188. https://doi.org/10.1016/j.ijmachtools.2005.04.001

    Article  Google Scholar 

  75. Lee H, Cho D, Ehmann K (2008) A mechanistic model of cutting forces in micro-end-milling with cutting-condition-independent cutting force coefficients. J Manuf Sci Eng Transactions of the ASME 130(3):311021–311029. https://doi.org/10.1115/1.2917300

    Article  Google Scholar 

  76. Lee K, Dornfeld DA (2005) Micro-burr formation and minimization through process control. Precis Eng 29(2):246–252. https://doi.org/10.1016/j.precisioneng.2004.09.002

    Article  Google Scholar 

  77. Lee K, Stirn B, Dornfeld D A (2002) Burr formation in micro-machining aluminum, 6061-T6. Springer, Boston, pp 47–51. https://doi.org/10.1007/0-306-47000-4_8

    Google Scholar 

  78. Lee MH, Lu MC, Tsai JC (2010) Development of sound based tool wear monitoring system in micro-milling. In: ASME 2010 International Manufacturing Science and Engineering Conference, Volume 1, International manufacturing science and engineering conference, pp 427–434 https://doi.org/10.1115/MSEC2010-34240

  79. Lekkala R, Bajpai V, Singh RK, Joshi SS (2011) Characterization and modeling of burr formation in micro-end milling. Precis Eng 35(4):625–637. https://doi.org/10.1016/j.precisioneng.2011.04.007

    Article  Google Scholar 

  80. Leo Kumar SP, Jerald J, Kumanan S, Prabakaran R (2014) A review on current research aspects in tool-based micromachining processes. Mater Manuf Process 29(11-12):1291–1337. https://doi.org/10.1080/10426914.2014.952037

    Article  Google Scholar 

  81. Leopold J, Wohlgemuth R (2010) Modeling and simulation of burr formation: State-of-the-Art and future trends. Springer, Berlin, pp 79–86. https://doi.org/10.1007/978-3-642-00568-8_9

    Google Scholar 

  82. Leroch S, Eder SJ, Ganzenmueller G, Murillo LJS, Ripoll MR (2018) Development and validation of a meshless 3d material point method for simulating the micro-milling process. J MaterProcess Technol 262:449–458. https://doi.org/10.1016/j.jmatprotec.2018.07.013

    Article  Google Scholar 

  83. Li H, Lai X, Li C, Feng J, Ni J (2008) Modelling and experimental analysis of the effects of tool wear, minimum chip thickness and micro tool geometry on the surface roughness in micro-end-milling. Journal of Micromechanics and Microengineering 18:2. https://doi.org/10.1088/0960-1317/18/2/025006

    Article  Google Scholar 

  84. Li KM, Chou SY (2010) Experimental evaluation of minimum quantity lubrication in near micro-milling. J MaterProcess Technol 210(15):2163–2170. https://doi.org/10.1016/j.jmatprotec.2010.07.031

    Article  Google Scholar 

  85. Li K M, Wang S L (2014) Effect of tool wear in ultrasonic vibration-assisted micro-milling. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture 228 (6):847–855. https://doi.org/10.1177/0954405413510514

    Article  Google Scholar 

  86. Liu J, Li J, Xu C (2013) Cutting force prediction on micromilling magnesium metal matrix composites with nanoreinforcements. J Micro Nanomanuf 1(1):011010–011010–10. https://doi.org/10.1115/1.4023286

    Article  Google Scholar 

  87. Lu MC, Wan BS (2013) Study of high-frequency sound signals for tool wear monitoring in micromilling. Int J Adv Manuf Technol 66(9):1785–1792. https://doi.org/10.1007/s00170-012-4458-8

    Google Scholar 

  88. Lu X, Wang F, Jia Z, Si L, Zhang C, Liang S Y (2017) A modified analytical cutting force prediction model under the tool flank wear effect in micro-milling nickel-based superalloy. Int J Adv Manuf Technol 91(9):3709–3716. https://doi.org/10.1007/s00170-017-0001-2

    Article  Google Scholar 

  89. Lu X, Zhang H, Jia Z, Feng Y, Liang SY (2017) Floor surface roughness model considering tool vibration in the process of micro-milling. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-1123-2

  90. Malekian M, Park S S, Jun M B (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49(7–8):586–598. https://doi.org/10.1016/j.ijmachtools.2009.02.006

    Article  Google Scholar 

  91. Malekian M, Park SS, Jun MB (2009) Tool wear monitoring of micro-milling operations. J MaterProcess Technol 209(10):4903–4914. https://doi.org/10.1016/j.jmatprotec.2009.01.013

    Article  Google Scholar 

  92. Malekian M, Mostofa M, Park S, Jun M (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J MaterProcess Technol 212(3):553–559. https://doi.org/10.1016/j.jmatprotec.2011.05.022

    Article  Google Scholar 

  93. Mamedov A, SL K, Lazoglu I (2013) Machining forces and tool deflections in micro milling. Procedia CIRP 8:147–151. https://doi.org/10.1016/j.procir.2013.06.080

    Article  Google Scholar 

  94. Mandal S (2014) Applicability of tool condition monitoring methods used for conventional milling in micromilling: A comparative review. J Ind Eng 2014:8. https://doi.org/10.1155/2014/837390

    Article  Google Scholar 

  95. Masuzawa T (2000) State of the art of micromachining. CIRP Ann Manuf Technol 49(2):473–488. https://doi.org/10.1016/S0007-8506(07)63451-9

    Article  Google Scholar 

  96. Mathai GK, Melkote SN, Rosen DW (2013) Effect of process parameters on burrs produced in micromilling of a thin nitinol foil. J Micro Nanomanuf 1(2):021005. https://doi.org/10.1115/1.4024099

    Article  Google Scholar 

  97. Mian AJ, Driver N, Mativenga PT (2011) Estimation of minimum chip thickness in micro-milling using acoustic emission. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 225(B9):1535–1551.

    Article  Google Scholar 

  98. Miao JC, Chen GL, Lai XM, Li HT, Li CF (2007) Review of dynamic issues in micro-end-milling. Int J Adv Manuf Technol 31(9):897–904. https://doi.org/10.1007/s00170-005-0276-6

    Article  Google Scholar 

  99. Miranda M, Serje D, Pacheco J, Bris J (2018) Tool edge radius wear and material removal rate performance charts for titanium micro-milling. Int J Precis Eng Manuf 19(1):79–84. https://doi.org/10.1007/s12541-018-0009-z

    Article  Google Scholar 

  100. Miranda-Giraldo M, Serje-Martınez D, Pacheco-Bolívar J, Bris-Cabrera J (2017) Burr formation and control for polymers micro-milling: A case study with vortex tube cooling. Dyna 84(203):150–159. https://doi.org/10.15446/dyna.v84n203.66095

    Article  Google Scholar 

  101. Natarajan U, Periyanan P R, Yang S H (2011) Multiple-response optimization for micro-endmilling process using response surface methodology. Int J Adv Manuf Technol 56(1-4):177–185. https://doi.org/10.1007/s00170-011-3156-2

    Article  Google Scholar 

  102. Niknam SA, Songmene V (2013) Simultaneous optimization of burrs size and surface finish when milling 6061-T6 aluminium alloy. Int J Precis Eng Manuf 14(8):1311–1320 . https://doi.org/10.1007/s12541-013-0178-8

    Article  Google Scholar 

  103. Nunes PS, Ohlsson PD, Ordeig O, Kutter JP (2010) Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluidics and Nanofluidics 9(2-3):145–161. https://doi.org/10.1007/s10404-010-0605-4

    Article  Google Scholar 

  104. Oliaei S N B, Karpat Y (2016) Influence of tool wear on machining forces and tool deflections during micro milling. Int J Adv Manuf Technol 84(9):1963–1980. https://doi.org/10.1007/s00170-015-7744-4

    Article  Google Scholar 

  105. de Oliveira FB, Rodrigues AR, Coelho RT, de Souza AF (2015) Size effect and minimum chip thickness in micromilling. Int J Mach Tools Manuf 89:39–54. https://doi.org/10.1016/j.ijmachtools.2014.11.001

    Article  Google Scholar 

  106. Oliveira F D, Adriane C, Mougo L, Carla A (2016) Study of the cutting forces on micromilling of an aluminum alloy. J Braz Soc Mech Sci Eng 1–8. https://doi.org/10.1007/s40430-016-0668-6

  107. Oosthuizen T, Nunco K, Conradie P, Dimitrov D (2016) The effect of cutting parameters on surface integrity in milling Ti6Al4V. South African Journal of Industrial Engineering 27(4):115–123. https://doi.org/10.7166/27-4-1199

    Article  Google Scholar 

  108. Özel T, Olleak A, Thepsonthi T (2017) Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod Eng 11(4-5):435–444. https://doi.org/10.1007/s11740-017-0761-4

    Article  Google Scholar 

  109. Piljek P, Keran Z, Math M (2014) Micromachining–review of literature from 1980 to 2010. Interdisciplinary Description of Complex Systems 12(1):1–27

    Article  Google Scholar 

  110. Pratap T, Patra K, Dyakonov A (2015) Modeling cutting force in micro-milling of ti-6al-4v titanium alloy. Procedia Engineering 129:134–139. https://doi.org/10.1016/j.proeng.2015.12.021

    Article  Google Scholar 

  111. Pérez H, Vizán A, Hernandez J, Guzmán M (2007) Estimation of cutting forces in micromilling through the determination of specific cutting pressures. J Mater Process Technol 190(1–3):18–22. https://doi.org/10.1016/j.jmatprotec.2007.03.118

    Article  Google Scholar 

  112. Qin Y (2015) Micromanufacturing engineering and technology. Micro and Nano Technologies, Elsevier Science

  113. Rao R V, Kalyankar V D (2014) Optimization of modern machining processes using advanced optimization techniques: A review. Int J Adv Manuf Technol 73(5-8):1159–1188. https://doi.org/10.1007/s00170-014-5894-4

    Article  Google Scholar 

  114. Reichenbach IG, Bohley M (2013) Micromachining of CP-titanium on a desktop machine - study on bottom surface quality in micro end milling. Adv Mater Res 769:53–60. https://doi.org/10.4028/www.scientific.net/AMR.769.53

    Article  Google Scholar 

  115. Rezaei H, Sadeghi M H, Budak E (2018) Determination of minimum uncut chip thickness under various machining conditions during micro-milling of ti-6al-4v. Int J Adv Manuf Technol 95(5):1617–1634. https://doi.org/10.1007/s00170-017-1329-3

    Article  Google Scholar 

  116. Rodríguez P, Labarga J (2013) A new model for the prediction of cutting forces in micro-end-milling operations. J Mater Process Technol 213(2):261–268. https://doi.org/10.1016/j.jmatprotec.2012.09.009

    Article  Google Scholar 

  117. Saedon J, Soo S, Aspinwall D, Barnacle A, Saad N (2012) Prediction and optimization of tool life in micromilling aisi d2 (62 hrc) hardened steel. Procedia Engineering 41:1674–1683. https://doi.org/10.1016/j.proeng.2012.07.367

    Article  Google Scholar 

  118. Sahoo P, Patra K (2019) Mechanistic modeling of cutting forces in micro-end-milling considering tool run out, minimum chip thickness and tooth overlapping effects. Mach Sci Technol 23(3):407–430. https://doi.org/10.1080/10910344.2018.1486423

    Article  Google Scholar 

  119. Sahoo P, Pratap T, Patra K, Dyakonov A A (2018) Size effects in micro end-milling of hardened p-20 steel. Materials Today: Proceedings 5:23726–23732

    Google Scholar 

  120. Saptaji K, Subbiah S, Dhupia J S (2012) Effect of side edge angle and effective rake angle on top burrs in micro-milling. Precis Eng 36(3):444–450. https://doi.org/10.1016/j.precisioneng.2012.01.008

    Article  Google Scholar 

  121. Schäfer F (1992) Grundlagen zur lösung von entgratproblemen. Entgrat-Technik, Entwicklungsstand und Problemlösungen, Reihe Kontakt und Studium. Oberfläche 392:33–42

    Google Scholar 

  122. Shi Z, Li Y, Liu Z, Qiao Y (2017) Determination of minimum uncut chip thickness during micro-end milling inconel 718 with acoustic emission signals and fem simulation. Int J Adv Manuf Technol https://doi.org/10.1007/s00170-017-0324-z

  123. Shi Z Y, Liu Z Q (2011) Numerical modeling of minimum uncut chip thickness for micromachining with different rake angle. In: ASME 2011 International manufacturing science and engineering conference. https://doi.org/10.1115/msec2011-50285, vol 44311. ASME, pp 403–407

  124. Son S M, Lim H S, Ahn J H (2005) Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf 45(4-5):529–535. https://doi.org/10.1016/j.ijmachtools.2004.09.001

    Article  Google Scholar 

  125. Sreeram S, Kumar A S, Rahman M, Zaman M T (2006) Optimization of cutting parameters in micro end milling operations in dry cutting condition using genetic algorithms. Int J Adv Manuf Technol 30 (11-12):1030–1039. https://doi.org/10.1007/s00170-005-0148-0

    Article  Google Scholar 

  126. Takács M, Verö B, Mészáros I (2003) Micromilling of metallic materials. J MaterProcess Technol 138(1–3):152–155. https://doi.org/10.1016/S0924-0136(03)00064-5

    Article  Google Scholar 

  127. Tansel I, Ozcelik B, Bao W, Chen P, Rincon D, Yang S, Yenilmez A (2006) Selection of optimal cutting conditions by using gonns. Int J Mach Tools Manuf 46(1):26–35. https://doi.org/10.1016/j.ijmachtools.2005.04.012

    Article  Google Scholar 

  128. Teng X, Huo D, Wong E, Meenashisundaram G, Gupta M (2016) Micro-machinability of nanoparticle-reinforced mg-based mmcs: An experimental investigation. Int J Adv Manuf Technol 87 (5-8):2165–2178. https://doi.org/10.1007/s00170-016-8611-7

    Article  Google Scholar 

  129. Thepsonthi T, Özel T (2012) Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 63(9-12):903–914. https://doi.org/10.1007/s00170-012-3980-z

    Article  Google Scholar 

  130. Todeschini R, Baccini A (2016) Handbook of bibliometric indicators: quantitative tools for studying and evaluating research. Wiley, New York

    Book  Google Scholar 

  131. Tseng A A (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14(4):R15–R34. https://doi.org/10.1088/0960-1317/14/4/r01

    Article  Google Scholar 

  132. Ucun I, Aslantas K, Gokce B, Bedir F (2014) Effect of tool coating materials on surface roughness in micromachining of inconel 718 super alloy. Proc Inst Mech Eng B J Eng Manuf 228(12):1550–1562. https://doi.org/10.1177/0954405414522217

    Article  Google Scholar 

  133. Ucun I, Aslantas K, Bedir F (2016) Finite element modeling of micro-milling: Numerical simulation and experimental validation. Mach Sci Technol 20(1):148–172. https://doi.org/10.1080/10910344.2016.1147650

    Article  Google Scholar 

  134. Uriarte L, Herrero A, Zatarain M, Santiso G, De Lacalle L L, Lamikiz A, Albizuri J (2007) Balance de incertidumbre y evaluació,n de la cadena de rigidez de una microfresadora dotada de herramientas de diámetro inferior a 0, 3 mm. Revista Iberoamericana de Ingeniería Mecánica 11(1):13–36

    Google Scholar 

  135. Uriarte L, Azcárate S, Herrero A, de Lacalle L N L, Lamikiz A (2008) Mechanistic modelling of the micro end milling operation. Proc Inst Mech Eng B J Eng Manuf 222(1):23–33. https://doi.org/10.1243/09544054JEM837

    Article  Google Scholar 

  136. Vazquez E, Ciurana J, Rodriguez CA, Thepsonthi T, Oezel T (2011) Swarm intelligent selection and optimization of machining system parameters for microchannel fabrication in medical devices. Mater Manuf Process 26(3):403–414. https://doi.org/10.1080/10426914.2010.520792

    Article  Google Scholar 

  137. Venkatesh V , Swain N, Srinivas G, Kumar P, Barshilia HC (2017) Review on the machining characteristics and research prospects of conventional microscale machining operations. Materials and Manufacturing Processes 32(3):235–262. https://doi.org/10.1080/10426914.2016.1151045

    Article  Google Scholar 

  138. Vogler M P, DeVor R E, Kapoor S G (2003) Microstructure-level force prediction model for micro-milling of multi-phase materials. J Manuf Sci Eng 125(2):202–209. https://doi.org/10.1115/1.1556402

    Article  Google Scholar 

  139. Vogler M P, DeVor R E, Kapoor S G (2005) On the modeling and analysis of machining performance in micro-endmilling, part i: Surface generation. J Manuf Sci Eng 126(4):685–694. https://doi.org/10.1115/1.1813470

    Article  Google Scholar 

  140. Vogler M P, Kapoor S G, DeVor R E (2005) On the modeling and analysis of machining performance in micro-endmilling, part ii: Cutting force prediction. J Manuf Sci Eng 126(4):695–705. https://doi.org/10.1115/1.1813471

    Article  Google Scholar 

  141. Wang W, Kweon S, Yang S (2005) A study on roughness of the micro-end-milled surface produced by a miniatured machine tool. J MaterProcess Technol 162(SI):702–708. https://doi.org/10.1016/j.jmatprotec.2005.02.141

    Article  Google Scholar 

  142. Weule H, Hüntrup V, Tritschler H (2001) Micro-cutting of steel to meet new requirements in miniaturization. CIRP Annals - Manufacturing Technology 50(1):61–64. https://doi.org/10.1016/S0007-8506(07)62071-X

    Article  Google Scholar 

  143. Wojciechowski S, Mrozek K (2017) Mechanical and technological aspects of micro ball end milling with various tool inclinations. Int J Mech Sci 134:424–435. https://doi.org/10.1016/j.ijmecsci.2017.10.032

    Article  Google Scholar 

  144. Wojciechowski S, Matuszak M, Powalka B, Madajewski M, Maruda R W, Krolczyk G M (2019) Prediction of cutting forces during micro end milling considering chip thickness accumulation. Int J Mach Tools Manuf 147. https://doi.org/10.1016/j.ijmachtools.2019.103466

  145. Wu X, Li L, He N (2017) Investigation on the burr formation mechanism in micro cutting. Precis Eng 47:191–196. https://doi.org/10.1016/j.precisioneng.2016.08.004

    Article  Google Scholar 

  146. Yadav AK, kumar M, Bajpai V, Singh NK, Singh RK (2017) {FE} modeling of burr size in high- speed micro-milling of ti6al4v. Precis Eng 49:287–292. https://doi.org/10.1016/j.precisioneng.2017.02.017

    Article  Google Scholar 

  147. Yi J, Jiao L, Wang X, Xiang J, Yuan M, Gao S (2015) Surface roughness models and their experimental validation in micro milling of 6061-T6 al alloy by response surface methodology. Math Probl Eng 2015. https://doi.org/10.1155/2015/702186

  148. Yole Développement (2019) Status of the mems industry 2019. Available from: http://www.i-micronewscom/

  149. Yuan Y, Jing X, Ehmann KF, Zhang D (2018) Surface roughness modeling in micro end-milling. Int J Adv Manuf Technol 95(5-8):1655–1664. https://doi.org/10.1007/s00170-017-1278-x

    Article  Google Scholar 

  150. Yuan Z J, Zhou M, Dong S (1996) Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62(4):327–330. https://doi.org/10.1016/S0924-0136(96)02429-6

    Article  Google Scholar 

  151. Zhang J, Yu Q, Zheng F, Long C, Lu Z, Duan Z (2016) Comparing keywords plus of wos and author keywords: A case study of patient adherence research. Journal of the Association for Information Science and Technology 67(4):967–972

    Article  Google Scholar 

  152. Zhang T, Liu Z, Xu C (2015) Theoretical modeling and experimental validation of specific cutting force for micro end milling. Int J Adv Manuf Technol 77(5):1433–1441. https://doi.org/10.1007/s00170-014-6549-1

    Article  Google Scholar 

  153. Zhang X, Ehmann KF, Yu T, Wang W (2016) Cutting forces in micro-end-milling processes. Int J Mach Tools Manuf 107:21–40. https://doi.org/10.1016/j.ijmachtools.2016.04.012

    Article  Google Scholar 

  154. Zhou L, Peng F, Yan R, Dong Q, Yang C (2015) Prediction and experimental validation of micro end-milling forces with finite element method. Springer International Publishing, Cham, pp 664–675. https://doi.org/10.1007/978-3-319-22876-1_58

    Google Scholar 

Download references

Acknowledgments

The authors would also like to acknowledge all the reviewers and anonymous referees for their valuable comments and suggestions to improve the quality of the research.

Funding

This work received support from MinCiencias Ph.D. National Scholarship Program No. 617-2, and Universidad de La Frontera through project DI17-0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Serje.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serje, D., Pacheco, J. & Diez, E. Micromilling research: current trends and future prospects. Int J Adv Manuf Technol 111, 1889–1916 (2020). https://doi.org/10.1007/s00170-020-06205-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06205-w

Keywords

Navigation