Skip to main content
Log in

Review of dynamic issues in micro-end-milling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In recent years, the miniaturization of products has become a trend all over the world. Besides conventional precision manufacturing technology and micro-electro-mechanical systems (MEMS), micro/meso mechanical manufacturing (M4) technology is regarded as another choice for an effective method to fabricate micro complicated 3D features, which need special attention paid to. In micro-end-milling machining, the stiffness of a micro-end-milling machine tool is somewhat lower, due to the size effect of material, and also, obviously, the ploughing condition and the quite slender end-milling tool. Thus, the stability of a micro-end-milling machine is very weak. This paper reviews the state-of-the-art of studying chip formation and dynamic problems in micro-end-milling, and discusses the possible future works in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawahara N, Suto T, Hirano T, Ishikawa Y, Kitahara T, Oyama N, Ataka T (1997) Microfactories: new applications of micromachine technology to the manufacture of small products. Res J Microsyst Technol 3(2):37–41

    Article  Google Scholar 

  2. MEL, AIST/MITI, Japan (1999) Micro machines. Annual Report of the Mechanical Engineering Laboratory, vol 21. Home page at: http://www.aist.go.jp/MEL/

  3. Sun YZ, Liang YC, Cheng K (2004) Micro-scale and meso-scale mechanical manufacturing. Chin J Mech Eng 40:1–6

    MATH  Google Scholar 

  4. Bang YB, Lee KY, Oh SY (2004) 5-axis micro milling machine for machining micro parts. Adv Manuf Technol 25:888–894

    Article  Google Scholar 

  5. Lu Z, Yoneyama T (1999) Micro cutting in the micro lathe turning system. Int J Mach Tools Manuf 39:1171–1183

    Article  Google Scholar 

  6. Yonyama T, Lu ZN (1998) Trial construction of micro turning system. J JSPE 64(4):598–602

    Google Scholar 

  7. Kitahara T, Ishikawa Y, Terada T, Nakajima N, Furuta K (1996) Development of micro-lathe. J Mech Eng Lab 50(5):117–123

    Google Scholar 

  8. Je T, Lee J, Choi D, Lee E, Shin B, Wang K (2004) A study of the micro pole structure fabrication and application technology by micro end-milling process. Key Eng Mater 257(258):453–458

    Google Scholar 

  9. Spath D, Huntrup V (1999) Micro-milling of steel for mold manufacturing influence of material, tools and process parameters. In: Proceedings of the 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology (EUSPEN), Bremen, Germany, May/June 1999, pp 203–206

  10. Rahman M, Kumar AS, Prakash JRS (2001) Micro milling of pure copper. J Mater Process Technol 116:39–43

    Article  Google Scholar 

  11. Schaller T, Bohn L, Mayer J, Schubert K (1999) Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills. Precis Eng 23(4):229–235

    Article  Google Scholar 

  12. Friedrich C, Coane P, Goettert J, Gopinathin N (1998) Direct fabrication of deep x-ray lithography masks by micromechanical milling. Precis Eng 22(3):164–173

    Article  Google Scholar 

  13. Tansel I, Rodriguez O, Trujillo M, Paz E, Li W (1998) Micro-end-milling: I. Wear and breakage. Int J Mach Tools Manuf 38(12):1419–1436

    Article  Google Scholar 

  14. Tansel IN, Arkan TT, Bao WY, Mahendrakar N, Shisler B, Smith D, McCool M (2000) Tool wear estimation in micro-machining. Part II: neural-network-based periodic inspector for nonmetals. Int J Mach Tools Manuf 40:609–620

    Article  Google Scholar 

  15. Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part III: influence of tool wear. Int J Mach Tools Manuf 40(15):2193 –2211

    Article  Google Scholar 

  16. Tansel I, Trujillo M, Nedbouyan A, Velez C, Bao WY, Arkan TT, Tansel B (1998) micro-end-milling. III. Wear estimation and tool breakage using acoustic emission signals. Int J Mach Tools Manuf 38:1349–1366

    Google Scholar 

  17. Friedrich CR, Vasile MJ (2001) development of the micromilling process for high-aspect-ratio microstructures. J Microelectromech Syst 5(1):33–38

    Article  Google Scholar 

  18. Vasile MJ, Friedrich CR, Kikkeri B, Mcelhannon R (1996) Micrometer-scale machining: tool fabrication and initial results. Precis Eng 19(2–3):180–186

    Article  Google Scholar 

  19. Takeuchi Y, Kato K, Kawakita S, Sata T (1993) Generation of sculptured surfaces by means of an ultra-precision milling machine. Annals CIRP 42:611–614

    Google Scholar 

  20. Damazo BN, Davies MA, Dutterer BS, Kennedy MD (1999) A summary of micro-milling studies. In: Proceedings of the 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology (EUSPEN), Bremen, Germany, May/June 1999, pp 322–325

  21. Friedrich CR, Kikkeri B (1995) Rapid fabrication of molds by mechanical micromilling: process development. Proc SPIE 2640:161–171

    Article  Google Scholar 

  22. Lee K, Ahn SH, Dornfeld DA, Wright PK (2001) The effect of run-out on design for manufacturing in micro-machining process. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECHE 2001), ASME Manufacturing Engineering Division, New York, November 2001

  23. Miyaguchi T, Masuda M, Takeoka E, Iwabe H (2001) Effect of tool stiffness upon tool wear in high spindle speed milling using small ball end mill. Precis Eng 25(2):145–154

    Article  Google Scholar 

  24. Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part II: tool run-out. Int J Mach Tools Manuf 40(15):2175–2192

    Article  Google Scholar 

  25. Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part I: analytical cutting force model. Int J Mach Tools Manuf 40(15):2155–2173

    Article  Google Scholar 

  26. Lee K, Dornfold DA, Kapoor SG (2002) An experimental study on burr formation in micro milling aluminum and copper. Trans NAMRI/SME 30:255–262

    Google Scholar 

  27. Weule H, Hüntrup V, Tritschler H (2001) Micro-cutting of steel to meet new requirements in miniaturization. Annals CIRP 50:61–64

    Google Scholar 

  28. Löhe D, Peishl A, Schulze V, Spath, Trischler H (2000) Microcutting of steels—interaction of material properties and process parameters. In: Proceedings of the MicroTEC 2000 conference, Hannover, Germany, September 2000, vol 55, pp 195–204

  29. Peichl A, Hüntrup V, Schulze V, Löhe D, Spath D (2000) Einfluss des Warmebehandlungszustands auf die mikrozerspanbarkeit von Stahlen. Htarterei Technische Mitteilungen 55:195–204

    Google Scholar 

  30. Shawky AM, Elbestawi MA (1997) An enhanced dynamic model in turning including the effect of ploughing forces. J Manuf Sci Eng—Trans ASME 119(1):10–20

    Google Scholar 

  31. Ohbuchi Y, Obikawa T (2003) Finite element modeling of chip formation in the domain of negative rake angle cutting. J Manuf Sci Eng—Trans ASME 125(3):324–332

    Google Scholar 

  32. Yuan ZJ, Ceng L, Dong S (1997) Ultraprecision machining of SiCw/Al composites. Annals CIRP 42:107–109

    Google Scholar 

  33. Chan KC, Cheung CF, Ramesh MV, Lee WB, To S (2001) A theoretical and experimental investigation of surface generation in diamond turning of an Al6061/SiCp metal matrix composite. Int J Sci 43(9):2047–2068

    Article  MATH  Google Scholar 

  34. Katayama S, Toda M, Hashimura M (1997) Growth model of built-up edge based on inhomogeneities in microstructure of steel. Int J Jpn Soc Prec Eng 31:15–20

    Google Scholar 

  35. Voigt RC, Marana RO, Cohen PH (1999) Machinability of gray iron—mechanics of chip formation. Int J Cast Metal Res 11(5):567–572

    Google Scholar 

  36. Zhu H, Zhao J (1983) Micro manufacturing technology. Chinese Science Publishing Company

  37. Kim CJ (2004) Mechanisms of chip formation and cutting dynamics in the micro-scale milling process. PhD dissertation, University of Michigan, Michigan

  38. Kim CJ, Mayor JR, Ni J (2004) A static model of chip formation in microscale milling. J Manuf Sci Eng—Trans ASME 126(4):710–718

    Article  Google Scholar 

  39. Wu DW (1998) A new approach of formulating the transfer function for dynamic cutting processes. J Eng Ind—Trans ASME 111:37–47

    Google Scholar 

  40. Endres WJ, Devor RE, Kapoor SG (1995) A dual-mechanism approach to the prediction of machining forces. Part I: model development. J Eng Ind—Trans ASME 117:526–533

    Google Scholar 

  41. Endres WJ, Devor RE, Kapoor SG (1995) A dual-mechanism approach to the prediction of machining forces. Part II: calibration and vibration. J Eng Ind—Trans ASME 117:534–541

    Google Scholar 

  42. Montgomery D, Altintas Y (1991) Mechanism of cutting force and surface generation in dynamic milling. J Eng Ind—Trans ASME 113:160–168

    Article  Google Scholar 

  43. Liu X, Jun MBG, DeVor RE, Kapoor SG (2004) Cutting mechanisms and their influence on dynamic forces, vibrations and stability in micro-end-milling. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECHE 2004), ASME Manufacturing Engineering Division, Anaheim, California, November 2004

  44. Sutherland JW, DeVor RE (1986) Improved method for cutting force and surface error prediction in flexible end milling systems. J Eng Ind—Trans ASME 108:269–279

    Article  Google Scholar 

  45. Vogler MP, DeVor RE, Kapoor SG (2003) Microstructure-level force prediction model for micro-milling of multi-phase materials. J Eng Ind—Trans ASME 125(2):202–209

    Article  Google Scholar 

  46. Yuan ZJ, Zhou M, Dong S (1996) Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62(4):327–330

    Article  Google Scholar 

  47. Shimada S, Ikawa N, Tanaka H, Ohmuri G, Uchikoshi J, Yoshinaga H (1993) Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. Annals CIRP 42(1):91–94

    Google Scholar 

  48. Shimada S, Ikawa N, Ohmuri G, Tanaka H, Uchikoshi J (1992) Molecular dynamic analysis as compared with experimental results of micromachining. Annals CIRP 41(1):117–120

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of the primary construction project of the Shanghai JiaoTong University, People’s Republic of China, grant no. W221702003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Miao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, J.C., Chen, G.L., Lai, X.M. et al. Review of dynamic issues in micro-end-milling. Int J Adv Manuf Technol 31, 897–904 (2007). https://doi.org/10.1007/s00170-005-0276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-005-0276-6

Keywords

Navigation