Skip to main content

Advertisement

Log in

Mechanistic force modeling in drilling of SiCp/Al matrix composites considering a comprehensive abrasive particle model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

SiCp/Al composite is one of the key light metal matrix composites widely used in aerospace and electronics industries due to its excellent material properties. Understanding the mechanism of abrasive particle action and the cutting force generation is crucial for achieving desired hole quality and machining accuracy. However, there is no research on cutting force modeling in drilling of SiCp/Al composites. This paper proposes an energy-based mechanistic modeling method to predict the cutting force in drilling of SiCp/Al composites for the first time. A new comprehensive abrasive particle model considering different particle action mechanisms, such as cracking, debonding, and squeezing, is presented to depict the energy consumed by abrasive particle action. Experiments with a wide range of particle volume fractions and feed rates, and different particle sizes were carried out to validate the accuracy of the proposed model. Results show that the proposed model can accurately predict the cutting force with an average error of 6.55% in drilling of SiCp/Al composites. Furthermore, the energy consumed on abrasive particle action is estimated to be 8.2–13.6% of total cutting energy. The proposed model on SiCp/Al composites can be extended to other particle reinforced metal matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A, B, C, m, n :

Parameters of J-C model

A i :

Contact area of particles embedded in the tool rake face (mm2)

b s :

Chip width (mm)

d, dc :

Depth of cut of the major and the chisel edge, respectively (mm)

E1, E2 :

Young’s modulus of the tool and the particle

E :

The composite elastic modulus

Em, Ec :

Energy consumed by the major cutting edge and the chisel edge, respectively (J/s)

\( {E}_{\mathrm{m}}^{\mathrm{s}},{E}_{\mathrm{c}}^{\mathrm{s}} \) :

Energy spends on shear zone of the major cutting edge and the chisel edge (J/s)

\( {E}_{\mathrm{m}}^{\mathrm{f}},{E}_{\mathrm{c}}^{\mathrm{f}} \) :

Energy spends on the tool-chip interface of the major cutting edge and the chisel edge (J/s)

\( {E}_{\mathrm{m}}^{\mathrm{p}},{E}_{\mathrm{c}}^{\mathrm{p}} \) :

Particle energy of the major cutting edge and the chisel edge (J/s)

\( {E}_{\mathrm{m}}^{\mathrm{n}},{E}_{\mathrm{c}}^{\mathrm{n}} \) :

Energy spends on new surface formation of the major cutting edge and the chisel edge (J/s)

\( {E}_{\mathrm{m}}^{\mathrm{pc}},{E}_{\mathrm{c}}^{\mathrm{pc}} \) :

Energy spends on the particle cracking of the major cutting edge and the chisel edge (J/s)

\( {E}_{\mathrm{m}}^{\mathrm{ps}},{E}_{\mathrm{c}}^{\mathrm{ps}} \) :

Energy spends on the particle squeezing of the major cutting edge and the chisel edge (J/s)

\( {E}_{\mathrm{m}}^{\mathrm{pd}},{E}_{\mathrm{c}}^{\mathrm{pd}} \) :

Energy spends on particle debonding of major cutting edge and secondary chisel edge (J/s)

f :

Feed rate (mm/r)

F a :

Force of extrusion zone (N)

Ff, Ffc :

Friction force of the major cutting edge and secondary chisel edge, respectively (N)

F N :

Sum of the normal force on individual abrasive particle (N)

F ni :

Normal force of individual abrasive particle (N)

Fpc, Fpd, Fps :

Force of particles cracking, debonding, and squeezing, respectively (N)

F tm :

Force of tool-matrix interface friction (N)

\( {F}_{\mathrm{tp}}^2 \) :

Force of the two-body abrasive friction (N)

\( {F}_{\mathrm{tp}}^3 \) :

Force of the three-body rolling friction (N)

Fs, Fsc :

Shear force of the major cutting edge and secondary chisel edge, respectively (N)

F Z :

Axial cutting force (N)

H tool :

Vickers hardness of the tool (MPa)

i :

Inclination angle (°)

i max :

Maximum of inclination angle (°)

k :

Drill point angle (°)

L :

Thickness of workpiece (mm)

L tc :

Length of tool-chip contact (mm)

N p :

Number of particles

Npc, Npd, Nps :

Number of the particles cracking, debonding, and squeezing

r g :

The radius of the groove (mm)

r i :

Radial distance (mm)

r x :

Transverse distance on the major cutting edge (mm)

R :

Radius of SiC particle (mm)

R a :

Radius of indentation zone (mm)

R c :

Fracture toughness of the material (kJ/m2)

R h :

Radius of the secondary chisel edge (mm)

s :

Spindle speed (rpm)

S pc :

Average cross-section area of an individual particle cracking (mm2)

Spd, Sps :

Average debonding and squeezing area of individual particle, respectively (mm2)

t :

Cutting time (s)

t 2 :

Volume fraction of the particles corresponding to the two-body abrasion (mm)

T :

Temperature raise in shear zone (K)

T 0 :

Room temperature (K)

T m :

Material melting temperature (K)

V c :

Cutting velocity (m/min)

Vf, Vfc :

Chip flow velocity of major cutting edge and secondary chisel edge, respectively (m/min)

V p :

Particle volume fraction (%)

Vs, Vsc :

Shear velocity of the major cutting edge and secondary chisel edge, respectively (m/min)

V Z :

Feed rate (mm/min)

w, wc :

Width of cutting of the major cutting edge and chisel edge, respectively (mm)

Xc, Xi, Xm :

The axial height of the extrusion zone, the secondary chisel edge and the major cutting edge, respectively (mm)

α, αc :

Rake angle of the major cutting edge and the secondary chisel edge, respectively (°)

α f :

Angle between the tangential and resultant velocity (°)

β :

Friction angle (°)

γ :

Shear strain

\( \dot{\gamma} \) :

Shear strain rate

δ p0 :

Groove depth of tool and particle (mm)

ζ :

Chip compression ratio

ϕ, ϕc :

Normal shear angle (°)

θ p :

Tool-particle angle of contact (°)

μ 3 :

Three-body rolling friction coefficient

υ1, υ2 :

Poission’ ratio of the major cutting edge and the chisel edge, respectively

σ b :

Cracking stress of the particle (MPa)

σ y :

Yield strength of the aluminum matrix (MPa)

σ p :

Particle debonding stress (MPa)

σ R :

Tensile strength of material (MPa)

τ :

Flow stress (MPa)

τ c :

Average shear stress of tool-chip contact (MPa)

ψ :

Chisel edge angle (°)

ω :

Half the thickness of the chisel edge (mm)

References

  1. Wang JF, Zuo JF, Shang Z, Fan XL (2019) Modeling of cutting force prediction in machining high-volume SiCp/Al composites. Appl Math Model 70:1–17. https://doi.org/10.1016/j.apm.2019.01.015

    Article  MATH  Google Scholar 

  2. Davima JP, Silva J, Baptista AM (2007) Experimental cutting model of metal matrix composites (MMCs). J Mater Process Technol 183:358–362. https://doi.org/10.1016/j.jmatprotec.2006.10.025

    Article  Google Scholar 

  3. Lou HS, Qu SG, Li XQ, Wang B, Kuang TR (2017) Glass coating on SiCp/Al composite mirror for ultra-smooth surface. Int J Adv Manuf Technol 88:1745–1753. https://doi.org/10.1007/s00170-016-8920-x

    Article  Google Scholar 

  4. Gu L, Chen JP, Xu H, Zhao WS (2016) Blasting erosion arc machining of 20 vol.% SiC/Al metal matrix composites. Int J Adv Manuf Technol 87:2775–2784. https://doi.org/10.1007/s00170-016-8676-3

    Article  Google Scholar 

  5. Zhou L, Hou N, Huang ST, Xu LF (2014) An experimental study on formation mechanisms of edge defects in orthogonal cutting of SiCp/Al composites. Int J Adv Manuf Technol 72:1407–1414. https://doi.org/10.1007/s00170-014-5743-5

    Article  Google Scholar 

  6. Tosun G, Muratoglu M (2004) The drilling of Al/SiCp metal–matrix composites. Part II: workpiece surface integrity. Compos Sci Technol 64:1413–1418. https://doi.org/10.1016/j.compscitech.2003.07.007

    Article  Google Scholar 

  7. Basavarajappa S, Chandramohan G, Paulo Davim J (2008) Some studies on drilling of hybrid metal matrix composites based on Taguchi techniques. J Mater Process Technol 196:332–338. https://doi.org/10.1016/j.jmatprotec.2007.05.043

    Article  Google Scholar 

  8. Taskesen A, Kütükde K (2014) Experimental investigation and multi-objective analysis on drilling of boron carbide reinforced metal matrix composites using grey relational analysis. Measurement 47:321–330. https://doi.org/10.1016/j.measurement.2013.08.040

    Article  Google Scholar 

  9. Ekici E, Motorcu AR, Uzun G (2017) An investigation of the effects of cutting parameters and graphite reinforcement on quality characteristics during the drilling of Al/10B4C composites. Measurement 95:395–404. https://doi.org/10.1016/j.measurement.2016.10.041

    Article  Google Scholar 

  10. Taskesen A, Kutukde K (2015) Non-contact measurement and multi-objective analysis of drilling temperature when drilling B4C reinforced aluminum composites. T Nonferr Metal Soc 25:271–283. https://doi.org/10.1016/S1003-6326(15)63602-0

    Article  Google Scholar 

  11. Xiang JF, Xie LJ, Gao FN, Yi J, Pang SQ, Wang XB (2018) Diamond tools wear in drilling of SiCp/Al matrix composites containing copper. Ceram Int 44:5341–5351. https://doi.org/10.1016/j.ceramint.2017.12.154

    Article  Google Scholar 

  12. Ravindranath VM, Yerriswamy M, Vivek SV, Shankar GSS, Kumar NGS (2017) Drilling of Al2219/B4C/Gr metal matrix hybrid composites. Mater Today 4:9898–9901. https://doi.org/10.1016/j.matpr.2017.06.290

    Article  Google Scholar 

  13. Salur E, Aslan A, Kuntoglu M, Gunes A, Sahin OS (2019) Experimental study and analysis of machinability characteristics of metal matrix composites during drilling. Compos Part B Eng 166:401–413. https://doi.org/10.1016/j.compositesb.2019.02.023

    Article  Google Scholar 

  14. Chang SSF, Bone GM (2009) Thrust force model for vibration-assisted drilling of aluminum 6061-T6. Int J Mach Tool Manu 49:1070–1076. https://doi.org/10.1016/j.ijmachtools.2009.07.011

    Article  Google Scholar 

  15. Matsumura T, Tamura S (2013) Cutting force model in drilling of multi-layered materials. Procedia CIRP 8:182–187. https://doi.org/10.1016/j.procir.2013.06.086

    Article  Google Scholar 

  16. Pramanik A, Zhang LC, Arsecularatne JA (2007) An FEM investigation into the behavior of metal matrix composites: tool–particle interaction during orthogonal cutting. Int J Mach Tool Manu 47:1497–1506. https://doi.org/10.1016/j.ijmachtools.2006.12.004

    Article  Google Scholar 

  17. Dandekar CR, Shin YC (2009) Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. Compos Part A Appl Sci 40:1231–1239. https://doi.org/10.1016/j.compositesa.2009.05.017

    Article  Google Scholar 

  18. Zhou L, Wang Y, Ma ZY, Yu XL (2014) Finite element and experimental studies of the formation mechanismof edge defects during machining of SiCp/Al composites. Int J Mach Tool Manu 84:9–16. https://doi.org/10.1016/j.ijmachtools.2014.03.003

    Article  Google Scholar 

  19. Zhou L, Cui C, Zhang PF, Ma ZY (2017) Finite element and experimental analysis of machinability during machining of high-volume fraction SiCp/Al composites. Int J Adv Manuf Technol 91:1935–1944. https://doi.org/10.1007/s00170-016-9933-1

    Article  Google Scholar 

  20. Chan KC, Cheung CF, Ramesh MV, Lee WB, To S (2001) A theoretical and experimental investigation of surface generation in diamond turning of an Al6061/SiCp metal matrix composite. Int J Mech Sci 43:2047–2068. https://doi.org/10.1016/S0020-7403(01)00028-5

    Article  MATH  Google Scholar 

  21. Ge YF, Xu JH, Yang H, Luo SB, Fu YC (2008) Workpiece surface quality when ultra-precision turning of SiCp/Al composites. J Mater Process Technol 203:166–175. https://doi.org/10.1016/j.jmatprotec.2007.09.070

    Article  Google Scholar 

  22. Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tool Manu 46:1795–1803. https://doi.org/10.1016/j.ijmachtools.2005.11.012

    Article  Google Scholar 

  23. Sikder S, Kishawy HA (2012) Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci 59:95–103. https://doi.org/10.1016/j.ijmecsci.2012.03.010

    Article  Google Scholar 

  24. Ghandehariun A, Hussein HM, Kishawy HA (2016) Machining metal matrix composites: novel analytical force model. Int J Adv Manuf Technol 83:233–241. https://doi.org/10.1007/s00170-015-7554-8

    Article  Google Scholar 

  25. Du JG, Li JG, Yao YX, Hao ZP (2014) Prediction of cutting forces in mill-grinding SiCp/Al composites. Mater Manuf Process 29:314–320. https://doi.org/10.1080/10426914.2013.864402

    Article  Google Scholar 

  26. Ghandehariun A, Kishawya H, Balazinski M (2016) On machining modeling of metal matrix composites: a novel comprehensive constitutive equation. Int J Mech Sci 107:235–241. https://doi.org/10.1016/j.ijmecsci.2016.01.020

    Article  Google Scholar 

  27. Liu C, Wang GF, Ren CZ, Yang YM (2014) Mechanistic modeling of oblique cutting considering fracture toughness and thermo-mechanical properties. Int J Adv Manuf Technol 74:1459–1468. https://doi.org/10.1007/s00170-014-6100-4

    Article  Google Scholar 

  28. Zhang WQ, Wang XL, Hu YJ, Wang SY (2018) Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel. Int J Mach Tool Manu 130-131:36–48. https://doi.org/10.1016/j.ijmachtools.2018.03.008

    Article  Google Scholar 

  29. Khan AS, Suh YS, Kazmi R (2004) Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. Int J Plast 20:2233–2248. https://doi.org/10.1016/j.ijplas.2003.06.005

    Article  MATH  Google Scholar 

  30. Moufki A, Devillez A, Dudzinski D, Molinari A (2004) Thermomechanical modelling of oblique cutting and experimental validation. Int J Mach Tool Manu 44:971–989. https://doi.org/10.1016/j.ijmachtools.2004.01.018

    Article  Google Scholar 

  31. Dabade UA, Dapkekar D, Joshi SS (2009) Modeling of chip-tool interface friction to predict cutting forces in machining of Al/SiCp composites. Int J Mach Tool Manu 49:690–700. https://doi.org/10.1016/j.ijmachtools.2009.03.003

    Article  Google Scholar 

  32. Astakhov VP, Xiao XR (2008) A methodology for practical cutting force evaluation based on the energy spent in the cutting system. Mach Sci Technol 12:325–347. https://doi.org/10.1080/10910340802306017

    Article  Google Scholar 

  33. Kishawy HA, Kannan S, Balazinski M (2004) An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann Manuf Technol 53:91–94. https://doi.org/10.1016/S0007-8506(07)60652-0

    Article  Google Scholar 

  34. Jiang J, Sheng FH, Ren FS (1998) Modelling of two-body abrasive wear under multiple contact conditions. Wear 217:35–45. https://doi.org/10.1016/S0043-1648(98)00161-6

    Article  Google Scholar 

  35. Li H, Qin XD, He GY, Price MA, Jin Y, Sun D (2017) An energy based force prediction method for UD-CFRP orthogonal machining. Compos Struct 159:34–43. https://doi.org/10.1016/j.compstruct.2016.09.051

    Article  Google Scholar 

  36. Zhou L, Huang ST, Wang D, Yu XL (2011) Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools. Int J Adv Manuf Technol 52:619–626. https://doi.org/10.1007/s00170-010-2776-2

    Article  Google Scholar 

  37. Matsumura T, Usui EJ (2010) Simulation of cutting process in peripheral milling by predictive cutting force model based on minimum cutting energy. Int J Mach Tool Manu 50:467–473. https://doi.org/10.1016/j.ijmachtools.2010.01.007

    Article  Google Scholar 

  38. Atkins AG (2003) Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int J Mech Sci 45:373–396. https://doi.org/10.1016/S0020-7403(03)00040-7

    Article  Google Scholar 

  39. Rosa PAR, Martins PAF, Atkins AG (2007) Revisiting the fundamentals of metal cutting by means of finite elements and ductile fracture mechanics. Int J Mach Tool Manu 47:607–617. https://doi.org/10.1016/j.ijmachtools.2006.05.003

    Article  Google Scholar 

  40. Langella A, Nele L, Maio A (2005) A torque and thrust prediction model for drilling of composite materials. Compos Part A Appl Sci 36:83–93. https://doi.org/10.1016/j.compositesa.2004.06.024

    Article  Google Scholar 

  41. Anand RS, Patra K (2017) Mechanistic cutting force modelling for micro-drilling of CFRP composite laminates. CIRP J Manuf Sci Technol 16:55–63. https://doi.org/10.1016/j.cirpj.2016.07.002

    Article  Google Scholar 

  42. Mauch CA, Lauderbaugh LK (1990) Modeling the drilling process—an analytical model to predict thrust force and torque. J Eng Mater T ASME 48:59–65. https://doi.org/10.1016/0141-6359(91)90173-G

    Article  Google Scholar 

  43. Kachanov LM (1971) Foundations of the theory of plasticity. North-Holland Publishing Company, Amsterdam, pp 245–251

    Google Scholar 

  44. Ponnusami SA, Turteltaub S, Zwaag S (2015) Cohesive-zone modelling of crack nucleation and propagation in particulate composites. Eng Fract Mech 149:170–190. https://doi.org/10.1016/j.engfracmech.2015.09.050

    Article  Google Scholar 

  45. Steglich D, Siegmund T, Brocks W (1999) Micromechanical modeling of damage due to particle cracking in reinforced metals. Comput Mater Sci 16:404–413. https://doi.org/10.1016/S0927-0256(99)00083-X

    Article  Google Scholar 

  46. Liu CJ, Ding WF, Yu TY, Yang CY (2018) Materials removal mechanism in high-speed grinding of particulate reinforced titanium matrix composites. Precis Eng 51:68–77. https://doi.org/10.1016/j.precisioneng.2017.07.012

    Article  Google Scholar 

  47. Dwivedi SP, Strvastava AK, Muarya NK, Sahu R, Tyagi A, Maurya R (2019) Microstructure and mechanical behaviour of Al/SiC/Al2O3 hybrid metal matrix composite. Mater Today Proc 25:789–792. https://doi.org/10.1016/j.matpr.2019.09.023

    Article  Google Scholar 

  48. Khdair AI, Fathy A (2020) Enhanced strength and ductility of Al-SiC nanocomposites synthesized by accumulative roll bonding. J Mater Res Technol 9(1):478–489. https://doi.org/10.1016/j.jmrt.2019.10.077

    Article  Google Scholar 

  49. Kumar V, Singh H (2019) Optimization of rotary ultrasonic drilling of optical glass using Taguchi method and utility approach. Eng Sci Technol 22:956–965. https://doi.org/10.1016/j.jestch.2019.02.004

    Article  Google Scholar 

  50. Zhang QH, Zhang JH, Sun DM, Wang GD (2002) Study on the diamond tool drilling of engineering ceramics. J Mater Process Technol 122:232–236. https://doi.org/10.1016/S0924-0136(02)00016-X

    Article  Google Scholar 

  51. Bhushan RK, Kumar S, Das S (2010) Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite. Int J Adv Manuf Technol 50:459–469. https://doi.org/10.1007/s00170-010-2529-2

    Article  Google Scholar 

  52. Huang ST, Zhou L, Chen J, Xu LF (2012) Drilling of SiCp/Al Metal Matrix Composites with PolycrystallineDiamond (PCD) Tools. Mater Manuf Process 27:1090–1094. https://doi.org/10.1080/10426914.2011.654152

    Article  Google Scholar 

  53. Rajmohan T, Palanikumar K (2011) Experimental investigation and analysis of thrust force in drilling hybrid metal matrix composites by coated carbide drills. Mater Manuf Process 26:961–968. https://doi.org/10.1080/10426914.2010.523915

    Article  Google Scholar 

  54. Ghetan GS, Rao PV (2018) Specific cutting energy modeling for turning nickel-based Nimonic 90 alloy under MQL condition. Int J Mech Sci 146-147:25–38. https://doi.org/10.1016/j.ijmecsci.2018.07.033

    Article  Google Scholar 

Download references

Funding

This project is supported by National Natural Science Foundation of China (No. 51705362, No. 51905377), Natural Science Foundation of Tianjin (No. 18JCQNJC75600), Science and Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2017KJ081, No. 2017KJ079), and the European Union’s Horizon 2020 research and innovation program (Grant No. 734272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Xiaogeng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Weiwei, X., Yan, J. et al. Mechanistic force modeling in drilling of SiCp/Al matrix composites considering a comprehensive abrasive particle model. Int J Adv Manuf Technol 109, 421–442 (2020). https://doi.org/10.1007/s00170-020-05688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05688-x

Keywords

Navigation