Skip to main content

Advertisement

Log in

Effect of variants of gas metal arc welding process on tensile properties of AA6061-T6 aluminium alloy joints

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This article describes the influence of gas metal arc welding (GMAW) variants on tensile properties of welded thin sheets of AA6061-T6 aluminium alloy. Single V butt joints were fabricated using the four variants of the GMAW process (constant current, pulsed current, cold metal transfer and pulsed cold metal transfer) under optimized conditions. Transverse tensile properties of the welded joints were evaluated, and a microhardness survey was done along the cross section of the joints. Higher hardness is recorded in the weld metal, i.e., 79 Hv for the pulsed cold metal transfer (PCMT) joint which is 14% higher than the continuous current GMAW joints. It is observed that a PCMT-welded joint exhibited the highest tensile strength of 227 MPa which is 16% higher than the continuous current GMAW joints. The fracture surface of the tensile specimens is highly dominated by the dimples with tearing ridges which suggests that the joints have experienced sufficient plastic deformation before failure irrespective of the welding process. The results demonstrated that the joints fabricated using the PCMT process exhibited superior tensile properties with controlled segregation of phases compared to the other variants of the GMAW process due to the pulsing effect associated with the retraction of the wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang HT, Feng JC, He P (2008) Interfacial phenomena of cold metal transfer (CMT) welding of zinc coated steel and wrought aluminium. Mater Sci Technol 24:1346–1349. https://doi.org/10.1179/174328407X213152

    Article  Google Scholar 

  2. Kumar R, Dilthey U, Dwivedi DK (2009) Welding of thin sheet of Al alloy (6082) by using Vario wire DC P-GMAW. Int J Adv Manuf Technol 42:102–117. https://doi.org/10.1007/s00170-008-1568-4

    Article  Google Scholar 

  3. Adamiec J, Rykała J (2015) Low energy versus pulse in MIG welding of “thin” sheets of aluminium alloy EN AW 6082. Solid State Phenom 229:35–44. https://doi.org/10.4028/www.scientific.net/SSP.229.35

    Article  Google Scholar 

  4. Senthil Kumar T, Balasubramanian V, Sanavullah MY (2007) Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy. Mater Des 28:2080–2092. https://doi.org/10.1016/j.matdes.2006.05.027

    Article  Google Scholar 

  5. Kumar TS, Balasubramanian V, Sanavullah MY, Babu S (2007) Effect of pulsed current TIG welding parameters on pitting corrosion behaviour of AA6061 aluminium alloy. J Mater Sci Technol 23:223–229. https://doi.org/10.1007/BF03027892

    Article  Google Scholar 

  6. Pickin CG, Young K (2006) Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. Sci Technol Weld Join 11:583–585. https://doi.org/10.1179/174329306X120886

    Article  Google Scholar 

  7. Wu CS, Chen MA, Lu YF (2005) Effect of current waveforms on metal transfer in pulsed gas metal arc welding. Meas Sci Technol 16:2459–2465. https://doi.org/10.1088/0957-0233/16/12/009

    Article  Google Scholar 

  8. Joseph A, Farson D, Harwig D, Richardson R (2005) Influence of GMAW-P current waveforms on heat input and weld bead shape. Sci Technol Weld Join 10:311–318. https://doi.org/10.1179/174329305X40624

    Article  Google Scholar 

  9. Wang P, Hu S, Shen J, Liang Y (2017) Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy. J Mater Process Technol 245:122–133. https://doi.org/10.1016/j.jmatprotec.2017.02.019

    Article  Google Scholar 

  10. Zhang H, Hu S, Wang Z, Liang Y (2015) The effect of welding speed on microstructures of cold metal transfer deposited AZ31 magnesium alloy clad. JMADE. 86:894–901. https://doi.org/10.1016/j.matdes.2015.07.143

    Article  Google Scholar 

  11. Pang J, Hu S, Shen J, Wang P, Liang Y (2016) Arc characteristics and metal transfer behavior of CMT + P welding process. J Mater Process Technol 238:212–217. https://doi.org/10.1016/j.jmatprotec.2016.07.033

    Article  Google Scholar 

  12. Manti R, Dwivedi DK (2007) Microstructure of Al-Mg-Si weld joints produced by pulse TIG welding. Mater Manuf Process 22:57–61. https://doi.org/10.1080/10426910601015923

    Article  Google Scholar 

  13. Karunakaran N, Balasubramanian V (2011) Effect of pulsed current on temperature distribution, weld bead profiles and characteristics of gas tungsten arc welded aluminum alloy joints. Trans Nonferrous Metals Soc China 21:278–286. https://doi.org/10.1016/S1003-6326(11)60710-3

    Article  Google Scholar 

  14. Nur Azida CL, Jalar A, Othman NK, Rashdi NM, Ibel MZ (2011) Effect of different filler metals towards welding of AA6061 Al alloy by X-ray CT scan. Adv Mater Res 146–147:1402–1405. https://doi.org/10.4028/www.scientific.net/AMR.146-147.1402

    Article  Google Scholar 

  15. Temmar M, Hadji M, Sahraoui T (2011) Effect of post-weld aging treatment on mechanical properties of tungsten inert gas welded low thickness 7075 aluminium alloy joints. Mater Des 32:3532–3536. https://doi.org/10.1016/j.matdes.2011.02.011

    Article  Google Scholar 

  16. Pinto H, Pyzalla AR, Hackl H, Bruckner J (2006) A comparative study of microstructure and residual stresses of CMT-, MIG- and laser-hybrid welds. Mater Sci Forum 524–525:627–632. https://doi.org/10.4028/www.scientific.net/MSF.524-525.627

    Article  Google Scholar 

  17. Kumar NP, Arungalai Vendan S, Siva Shanmugam N (2016) Investigations on the parametric effects of cold metal transfer process on the microstructural aspects in AA6061. J Alloys Compd 658:255–264. https://doi.org/10.1016/j.jallcom.2015.10.166

    Article  Google Scholar 

  18. Cong B, Ouyang R, Qi B, Ding J (2016) Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminum-copper alloy welds. Rare Metal Mater Eng 45:606–611. https://doi.org/10.1016/S1875-5372(16)30080-7

    Article  Google Scholar 

  19. Elrefaey A, Ross NG (2015) Microstructure and mechanical properties of cold metal transfer welding similar and dissimilar aluminum alloys. Acta Metall Sin 28:715–724. https://doi.org/10.1007/s40195-015-0252-6

    Article  Google Scholar 

  20. Cornacchia G, Cecchel S, Panvini A (2018) A comparative study of mechanical properties of metal inert gas (MIG)-cold metal transfer (CMT) and fiber laser-MIG hybrid welds for 6005A T6 extruded sheet. Int J Adv Manuf Technol 94:2017–2030. https://doi.org/10.1007/s00170-017-0914-9

    Article  Google Scholar 

  21. Feng J, Zhang H, He P (2009) The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater Des 30:1850–1852. https://doi.org/10.1016/j.matdes.2008.07.015

    Article  Google Scholar 

  22. Liang Y, Shen J, Hu S, Wang H, Pang J (2018) Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG–CMT hybrid welding. J Mater Process Technol 255:161–174. https://doi.org/10.1016/j.jmatprotec.2017.12.006

    Article  Google Scholar 

  23. Mathivanan A, Devakumaran K, Kumar AS (2014) Comparative study on mechanical and metallurgical properties of AA6061 aluminum alloy sheet weld by pulsed current and dual pulse gas metal arc welding processes. Mater Manuf Process:37–41. https://doi.org/10.1080/10426914.2014.912314

  24. Wang L, Jin L, Huang W, Xu M, Xue J (2016) Effect of thermal frequency on AA6061 aluminum alloy double pulsed gas metal arc welding. Mater Manuf Process 31:2152–2157. https://doi.org/10.1080/10426914.2015.1103863

    Article  Google Scholar 

  25. Vargas JA, Torres JE, Pacheco JA, Hernandez RJ (2013) Analysis of heat input effect on the mechanical properties of Al-6061-T6 alloy weld joints. Mater Des 52:556–564. https://doi.org/10.1016/j.matdes.2013.05.081

    Article  Google Scholar 

  26. Wang L, Gao M, Zhang C, Zeng X (2016) Effect of beam oscillating pattern on weld characterization of laser welding. Mater Des 108(2016) https://doi.org/10.1016/j.matdes.2016.07.053

  27. Stela ME, Ioana CL, Gheorghe S, Doina M (2013) The study of increased height at MIG-CMT continuous, nonconventional technologies review. Romanian Association of Nonconventional Technologies, Romania

    Google Scholar 

  28. Ambriz RR, Chicot D, Benseddiq N (2011) Local mechanical properties of the 6061-T6 aluminium weld using micro-traction and instrumented indentation. Eur J Mech A Solids 30:307–315. https://doi.org/10.1016/j.euromechsol.2010.12.007

    Article  MATH  Google Scholar 

  29. Ambriz RR, Barrera G, García R, López VH (2009) A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA). Mater Des 30:2446–2453. https://doi.org/10.1016/j.matdes.2008.10.025

    Article  Google Scholar 

  30. Chang SY, Tsao LC, Li TY, Chuang TH (2009) Joining 6061 aluminum alloy with Al-Si-Cu filler metals. J Alloys Compd 488:174–180. https://doi.org/10.1016/j.jallcom.2009.08.056

    Article  Google Scholar 

  31. Guo H, Hu J, Tsai HL (2009) Formation of weld crater in GMAW of aluminum alloys. Int J Heat Mass Transf 52:5533–5546. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.028

    Article  MATH  Google Scholar 

  32. Bakar SRS, Ahmad MY, Ibrahim MFA, Jalar A, Djalil SJS, Othman NK (2012) The effect of double pass GMAW process on microstructure and mechanical properties of Aa 6061-T6 joining plates. Key Eng Mater 510–511:98–104. https://doi.org/10.4028/www.scientific.net/KEM.510-511.98

    Article  Google Scholar 

  33. Zhang C, Li G, Gao M, Yan J, Zeng XY (2013) Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy. Int J Adv Manuf Technol 68:1253–1260. https://doi.org/10.1007/s00170-013-4916-y

    Article  Google Scholar 

  34. Hu J, Tsai T-L (2006) Effects of welding current in gas metal arc welding. 9th AIAA/ASME Jt Thermophys heat Transf Conf. https://doi.org/10.2514/6.2006-3584

  35. Ambriz RR, Barrera G, García R, López VH (2010) The microstructure and mechanical strength of Al-6061-T6 GMA welds obtained with the modified indirect electric arc joint. Mater Des 31:2978–2986. https://doi.org/10.1016/j.matdes.2009.12.017

    Article  Google Scholar 

  36. Gungor B, Kaluc E, Taban E, Sik ŞŞA (2014) Mechanical and microstructural properties of robotic cold metal transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys. Mater Des 54:207–211. https://doi.org/10.1016/j.matdes.2013.08.018

    Article  Google Scholar 

  37. Ambriz RR, Mesmacque G, Ruiz A, Amrouche A, López VH (2010) Effect of the welding profile generated by the modified indirect electric arc technique on the fatigue behavior of 6061-T6 aluminum alloy. Mater Sci Eng A 527:2057–2064. https://doi.org/10.1016/j.msea.2009.11.044

    Article  Google Scholar 

  38. Hirose A, Todaka H, Yamaoka H et al (1999) Quantitative evaluation of softened regions in weld heat-affected zones of 6061-T6 aluminum alloy - characterizing of the laser beam welding process. Metall Mater Trans A Phys Metall Mater Sci 30:2115–2120. https://doi.org/10.1007/s11661-999-0022-z

    Article  Google Scholar 

  39. Ambriz RR, Barrera G, García R, López VH (2010) Effect of the weld thermal cycles of the modified indirect electric arc on the mechanical properties of the AA6061-T6 alloy. Weld Int 24:321–328. https://doi.org/10.1080/09507110903568778

    Article  Google Scholar 

  40. Yamamoto H, Harada S, Ueyama T, Ogawa S, Matsuda F, Nakata K (1993) Beneficial effect of low frequency pulsed mig welding on grain refinement of weld metal and improvement of solidification crack susceptibility for aluminium alloy. Weld Int 7:593–598. https://doi.org/10.1080/09507119309548453

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the Science and Engineering Research Board (SERB), DST, Government of India, for providing financial support through R&D project no.: SB/S3/MMER/0108/2013 to carry out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Addanki Ramaswamy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaswamy, A., Malarvizhi, S. & Balasubramanian, V. Effect of variants of gas metal arc welding process on tensile properties of AA6061-T6 aluminium alloy joints. Int J Adv Manuf Technol 108, 2967–2983 (2020). https://doi.org/10.1007/s00170-020-05602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05602-5

Keywords

Navigation