Skip to main content
Log in

A comparative study of mechanical properties of metal inert gas (MIG)-cold metal transfer (CMT) and fiber laser-MIG hybrid welds for 6005A T6 extruded sheet

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Among the several welding technologies available today, traditional metal inert gas (MIG) one is widely used for junction of Al-alloys parts in transportation field, while cold metal transfer (CMT) and laser techniques are recent alternatives potentially providing advantages over the former one, such as reduction of deformations and reduced alteration of base material. The present research aims to investigate the effects of these different techniques on the microstructural and mechanical (hardness, tensile strength, yield stresses, and elongation) properties of welded joints of 6005A-T6. Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM/EDS) was used for fractographic observations and to analyze microstructural changes after welding. From this examination, it is found that CMT and fiber laser-MIG hybrid joints of AA6005 aluminum alloy showed superior mechanical properties compared with MIG weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, Vieregge A (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280:37–49. doi:10.1016/S0921-5093(99)00653-X

    Article  Google Scholar 

  2. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS (2000) Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A 280:102–107. doi:10.1016/S0921-5093(99)00674-7

    Article  Google Scholar 

  3. Williams JC, Starke EA Jr (2003) Progress in structural materials for aerospace systems. Acta Mater 51:5775–5799. doi:10.1016/j.actamat.2003.08.023

    Article  Google Scholar 

  4. Kawasaki T, Makino T, Masai K, Ohba H, Ina Y, Ezumi M (2004) Application of friction stir welding to construction of railway vehicles. JSME Int J Ser A 47(3):502–511. doi:10.1299/jsmea.47.502

    Article  Google Scholar 

  5. Anderson T, CEng, CWEng (2010) Welding aluminum—questions and answers, a practical guide for troubleshooting aluminum welding-related problems. Reviewed by the AWS Product Development Committee, American Welding Society

  6. ASM Specialty Handbook (1993) Aluminum and aluminum alloys. Davis JR (ed). ASM International. ISBN: 978-0-87170-496-2

  7. Kou S (2003) Welding metallurgy, 2nd edn. John Willey, USA

    Google Scholar 

  8. ASM Metals Handbook (1993) Welding, Brazing and Soldering, vol 6, 10th edn. American Society for Metals, USA

    Google Scholar 

  9. Mandal NR (2005) Aluminium welding, 2nd edn. Narosa Publications, New Delhi

    Google Scholar 

  10. Mathers G (2002) The welding of aluminium and its alloys. Woodhead Publishing Limited, Published in North America by CRC Press LLC

  11. Anderson T (2001) The repair of aluminum structures. AlcoTec Corporation, Published by ESAB AB, Sweden

  12. European Aluminium (2015) Aluminium Automotive Manual. IOP Publishing PhysicsWeb. https://european-aluminium.eu/media/1519/4beam-welding2015.pdf

  13. Balasubramanian V, Ravisankar V, Madhusudhan RG (2008) Effect of pulsed current welding on mechanical properties of high strength aluminum alloy. Int J Adv Manuf Technol 36:254–262. doi:10.1007/s00170-006-0848-0

    Article  Google Scholar 

  14. Taban E, Kaluc E (2007) Comparison between microstructure characteristics and joint performance of 5086-H32 aluminium alloy welded by MIG, TIG and friction stir welding processes. Kovove Mater 45:241–248

    Google Scholar 

  15. Zhao L, Guan YC, Wang Q, Cong BQ, Qi BJ (2015) Analysis and comparison of aluminum alloy welded joints between metal inert gas welding and tungsten inert gas welding. Surf Rev Lett 22:1550079. doi:10.1142/S0218625X15500791

    Article  Google Scholar 

  16. Sayer S (2008) Effects of post weld aging on the mechanical properties and microstructure of TIG and MIG welded AA 7075. Mater Test 50(9):489–494. doi:10.3139/120.100908

    Article  Google Scholar 

  17. Manti R, Dwivedi DK, Agarwal A (2008) Microstructure and hardness of AlMg-Si weldments produced by pulse GTA welding. Int J Adv Manuf Technol 36:263–269. doi:10.1007/s00170-006-0849-z

    Article  Google Scholar 

  18. Norman AF, Drazhner V, Prangnell PB (1999) Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al–Cu–Mg–Mn alloy. Mater Sci Eng A259:53–64. doi:10.1016/S0921-5093(98)00873-9

    Article  Google Scholar 

  19. Squillace A, De Fenzo A, Giorleo G, Bellucci F (2004) A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints. J Mater Process Technol 97:152. doi:10.1016/j.jmatprotec.2004.03.022

    Google Scholar 

  20. Munoz AC, Ruckert G, Hunean B, Sauvage X, Marya S (2008) Comparison of TIG welded and friction welded Al-4.5 Mg- 0.26 Sc alloy. J Materials Proc Technol 197:337–343. doi:10.1016/j.jmatprotec.2007.06.035

    Article  Google Scholar 

  21. Simar A, Bréchet Y, de Meester B, Denquin A, Pardoen T (2008) Microstructure, local and global mechanical properties of friction stir welds in aluminium alloy 6005A-T6. Mater Sci Eng A 486:85–95. doi:10.1016/j.msea.2007.08.041

    Article  Google Scholar 

  22. Caruso S, Sgambitterra E, Rinaldi S, Gallone A, Viscido L, Filice L, Umbrello D (2016) Experimental comparison of the MIG, friction stir welding, cold metal transfer and hybrid laser-MIG processes for AA 6005-T6 aluminium alloy. AIP Conf Proc 1769:100004. doi:10.1063/1.4963498

    Article  Google Scholar 

  23. Pinto H, Pyzalla A, Hackl H, Bruckner J (2006) A comparative study of microstructure and residual stresses of CMT-, MIG- and laser-hybrid welds. Materials Science Forum Vols. 524–525: 627–632. online at http://www.scientific.net © (2006) Trans tech publications, Switzerland

  24. Cao R, Wen BF, Chen JH, Chung WP (2013) Cold metal transfer joining of magnesium AZ31B-to-aluminumA6061-T6. Mater Sci Eng A 560:256–266. doi:10.1016/j.msea.2012.09.065

    Article  Google Scholar 

  25. Feng J, Zhang H, He P (2009) The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater Des 30:1850–1852. doi:10.1016/j.matdes.2008.07.015

    Article  Google Scholar 

  26. Talalaev R, Veinthal R, Laansoo A, Sarkans M (2012) Cold metal transfer (CMT) welding of thin sheet metal products. Estonian J Eng 18:243–250. doi:10.3176/eng.2012.3.09

    Article  Google Scholar 

  27. Gungor B, Kaluc E, Taban E, Sik SSA (2014) Mechanical and microstructural properties of robotic cold metal Trasfer (CMT) welded 5083-H111 and 6082-T&51 aluminum alloys. Mater Des 54:207–211. doi:10.1016/j.matdes.2013.08.018

    Article  Google Scholar 

  28. Wang J, Feng JC, Wan YX (2008) Microstructure of Al–Mg dissimilar weld made by cold metal transfer MIG welding. J Mater Sci Technol 24-7:827–831. doi:10.1179/174328408X278411

    Article  Google Scholar 

  29. Pickin CG, Young K (2006) Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. J Sci Technol Weld Join 11-5:583–585. doi:10.1179/174329306X120886

    Article  Google Scholar 

  30. El-batahgy A., Kutsuna M. (2009) Laser beam welding of AA5052, AA5083, and AA6061 aluminum alloys. Hindawi Pubblishing Corporation Advances in Materials Science and Engineering ID 974182, doi: 10.1155/2009/974182.

  31. Kawahito Y, Matsumoto N, Abe Y, Katayama S (2011) Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy. J Mater Process Technol 211:1563–1568. doi:10.1016/j.jmatprotec.2011.04.002

    Article  Google Scholar 

  32. Katayamaa S, Kawahitoa Y, Mizutania M (2010) Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Phys Procedia 5:9–17. doi:10.1016/j.phpro.2010.08.024

    Article  Google Scholar 

  33. Chi CH, Pinkerton AJ, Li L, Liu Z, Mistry AT (2011) Gap-free fibre laser welding of Zn_coated steel on al alloy for light-weight automotive applications. Mater Des 32:495–504. doi:10.1016/j.matdes.2010.08.034

    Article  Google Scholar 

  34. Katayama S, Nagayama H, Kawahito Y (2009) Fibre laser welding of aluminium alloy. J Weld Int 23-10:744–752. doi:10.1080/09507110902836911

    Article  Google Scholar 

  35. Seto N, Katayama S, Matsunawa A (2000) High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation. J Laser Appl 12-6:245–250

    Article  Google Scholar 

  36. Matsunawa A, Seto N, Kim JD, Mizutani M, Katayama S (2001) Observation of keyhole and molten pool behaviour in high power laser welding—mechanism of porosity formation and its suppression method. Trans JWRI 30-1:13–27

    Google Scholar 

  37. International Organization for Standardization, UNI EN ISO 4136:2012 (2012) Destructive tests on welds in metallic materials — Transverse tensile test, Geneva, Switzerland

  38. International Organization for Standardization, UNI EN ISO 6892-1:2016 (2016) Metallic materials–Tensile testing–Part 1: Method of test at room temperature, Geneva, Switzerland

  39. ASTM International, ASTM E18–03 (2003) Standard test methods for rockwell hardness and rockwell superficial hardness of metallic materials, West Conshohocken, PA

  40. ASTM International, ASTM E92–160 (2016) Standard test methods for vickers hardness and knoop hardness of metallic materials, West Conshohocken, PA

  41. ASTM International, ASTM E140–02 (2002) Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness, west conshohocken, PA

  42. Ambriz RR, Barrera G, García R, López VH (2009) A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA). Mater Des 30:2446–2453. doi:10.1016/j.matdes.2008.10.025

    Article  Google Scholar 

  43. Myhr OR, Grong O, Fjaer HG, Marioara CD (2004) Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing. Acta Mat 52:4997–5008. doi:10.1016/j.actamat.2004.07.002

    Article  Google Scholar 

  44. EN AW-6082, Metra. http://www.metra.it/aluminium/tabellaLeghe/tabellaCatalogo6082.pdf

  45. UNI EN ISO 4136:2012 (2012) Destructive tests on welds in metallic materials—transverse tensile test

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Cornacchia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornacchia, G., Cecchel, S. & Panvini, A. A comparative study of mechanical properties of metal inert gas (MIG)-cold metal transfer (CMT) and fiber laser-MIG hybrid welds for 6005A T6 extruded sheet. Int J Adv Manuf Technol 94, 2017–2030 (2018). https://doi.org/10.1007/s00170-017-0914-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0914-9

Keywords

Navigation