Skip to main content

Advertisement

Log in

Electrophoretic deposition of PEEK/bioactive glass composite coatings on stainless steel for orthopedic applications: an optimization for in vitro bioactivity and adhesion strength

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Polyether ether ketone (PEEK) is an increasingly investigated biocompatible material for orthopedic and spinal implants. The lack in bioactivity of PEEK has to be addressed, either by surface modification or formation of a composite with bioactive materials, such as hydroxyapatite (HA) or bioglass. The addition of bioactive materials improves the bone ingrowth of implants for biomedical application. Accordingly, this study involves electrophoretic deposition (EPD) to obtain PEEK/bioactive glass (BG) coatings on 316 L stainless steel (SS) substrates. In order to prepare the PEEK/BG suspension 2 wt.% PEEK and 6.67 wt.% BG powder were dispersed in ethanol, while citric acid was used as the charging agent. The optimum EPD parameters were applied electric field of 220 V/cm for 2 min. The deposited green coatings presented a homogeneous microstructure and uniform thickness of ~ 100 μm. Subsequently, sintering temperature was optimized in order to obtainappropriate combination of adhesion strength and the in vitro bioactivity. The optimized sintering parameters (400 °C for 30 min) embedded the BG particles in a PEEK matrix, which improved the adhesion strength of coating to the substrate and also formed apatite crystals upon immersion in simulated body fluid. The coatings sintered at 400 °C showed significant improvement in the corrosion resistance of bare stainless steel. Moreover, the cytocompatibility tests showed that the MG-63 cells proliferate and grow on the surface of PEEK/BG coatings. The results demonstrated that EPD is a convenient method to obtain homogeneous, robust, and bioactive PEEK/BG coatings on 316 L SS substrates for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nandi SK, Kundu B, Datta S (2011) Development and applications of varieties of bioactive glass compositions in dental surgery, Third Generation Tissue Engineering , Orthopaedic Surgery and as Drug Delivery System. Biomater Appl Nanomed:69–116

  2. Khan W, Muntimadugu E, Jaffe M, Domb AJ (2014) Focal controlled drug delivery. Adv Deliv Sci Technol:33–59. https://doi.org/10.1007/978-1-4614-9434-8

  3. Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention - a review. Recent Patents Corros Sci 2:40–54. https://doi.org/10.2174/1877610801002010040

    Article  Google Scholar 

  4. Hench LL, Jones JR (2015) Bioactive Glasses: frontiers and challenges. Front Bioeng Biotechnol 3:1–12. https://doi.org/10.3389/fbioe.2015.00194

    Article  Google Scholar 

  5. Mehdipour M, Afshar A (2012) A study of the electrophoretic deposition of bioactive glass-chitosan composite coating. Ceram Int 38:471–476. https://doi.org/10.1016/j.ceramint.2011.07.029

    Article  Google Scholar 

  6. Vendra VVK, Wu L, Krishnan S (2010) Polymer thin films for biomedical applications. https://doi.org/10.1002/9783527610419.ntls0179

    Book  Google Scholar 

  7. Ma R, Tang T (2014) Current strategies to improve the bioactivity of PEEK. Int J Mol Sci 15:5426–5445. https://doi.org/10.3390/ijms15045426

    Article  Google Scholar 

  8. Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I, Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I, Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I (2010) Electrophoretic deposition of biomaterials. J R Soc Interface 7(Suppl 5):S581–S613. https://doi.org/10.1098/rsif.2010.0156.focus

    Article  Google Scholar 

  9. L.E. Cordero Arias, Electrophoretic deposition of organic/inorganic composite coatings on metallic substrates for bone replacement applications: mechanisms and development of new bioactive materials based on polysaccharides, (2015) 260.

  10. Zhang BGX, Myers DE, Wallace GG, Brandt M, Choong PFM (2014) Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci 15:11878–11921. https://doi.org/10.3390/ijms150711878

    Article  Google Scholar 

  11. Boccaccini AR, Peters C, Roether JA, Eifler D, Misra SK, Minay EJ (2006) Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass® coatings on NiTi shape memory alloy wires. J Mater Sci 41:8152–8159. https://doi.org/10.1007/s10853-006-0556-z

    Article  Google Scholar 

  12. Avcu E, Baştan FE, Abdullah HZ, Ur Rehman MA, Yıldıran Avcu Y, Boccaccini AR, Ba FE, Abdullah HZ (2019) Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review. Prog Mater Sci 103:69–108. https://doi.org/10.1016/j.pmatsci.2019.01.001

    Article  Google Scholar 

  13. Luo D, Zhitomirsky I (2015) Electrophoretic deposition of polyetheretherketone composites, containing huntite and alumina platelets. J Electrochem Soc 162:D3057–D3062. https://doi.org/10.1149/2.0191511jes

    Article  Google Scholar 

  14. Anguiano-Sanchez J, Martinez-Romero O, Siller HR, Diaz-Elizondo JA, Flores-Villalba E, Rodriguez CA (2016) Influence of PEEK coating on hip implant stress shielding: a finite element analysis. Comput Math Methods Med 2016:1–10. https://doi.org/10.1155/2016/6183679

    Article  Google Scholar 

  15. Corni I, Neumann N, Eifler D, Boccaccini AR (2008) Polyetheretherketone (PEEK) coatings on stainless steel by electrophoretic deposition. Adv Eng Mater 10:559–564. https://doi.org/10.1002/adem.200800010

    Article  Google Scholar 

  16. Seuss S, Heinloth M, Boccaccini AR (2015) Development of bioactive composite coatings based on combination of PEEK, bioactive glass and Ag nanoparticles with antibacterial properties. Surf Coat Technol 301:100–105. https://doi.org/10.1016/j.surfcoat.2016.03.057

    Article  Google Scholar 

  17. Rajeswari D, Gopi D, Ramya S, Kavitha L (2014) Investigation of anticorrosive, antibacterial and in vitro biological properties of a sulphonated poly (etheretherketone)/strontium, cerium co-substituted hydroxyapatite composite coating developed on surface treated surgical grade stainless steel for orth. RSC Adv 4:61525–61536. https://doi.org/10.1039/c4ra12207k

    Article  Google Scholar 

  18. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  Google Scholar 

  19. Corni I, Neumann N, Novak S, König K, Veronesi P, Chen Q, Ryan MP, Boccaccini AR (2009) Electrophoretic deposition of PEEK-nano alumina composite coatings on stainless steel. Surf Coat Technol 203:1349–1359. https://doi.org/10.1016/j.surfcoat.2008.11.005

    Article  Google Scholar 

  20. Torres Y, Romero C, Qiang C, Pérez G, Rodríguez-Ortiz JA, Pavón JJ, Álvarez L, Arévalo C, Boccaccini AR (2016) Electrophoretic Deposition of PEEK/45S5 bioactive glass coating on porous titanium substrate: influence of processing conditions and porosity parameters. Key Eng Mater 704:343–350. https://doi.org/10.4028/www.scientific.net/KEM.704.343

    Article  Google Scholar 

  21. Baştan FEFEFE, Rehman MAU, Avcu YYYY, Avcu E, Üstel F, Boccaccini ARAR, Rehman MAU, Avcu YYYY, Avcu E, Üstel F, Boccaccini ARAR (2018) Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications. Colloids Surf B: Biointerfaces 169:176–182. https://doi.org/10.1016/j.colsurfb.2018.05.005

    Article  Google Scholar 

  22. Virk RS, Rehman MAU, Boccaccini AR (2018) PEEK based biocompatible coatings incorporating h-BN and bioactive glass by electrophoretic deposition. ECS Trans 82:89–95. https://doi.org/10.1149/08201.0089ecst

    Article  Google Scholar 

  23. Miola M, Vernè E, Piredda A, Seuss S, Cabanas-Polo S, Boccaccini AR (2015) Development and characterization of PEEK/B2O3-doped 45S5 bioactive glass composite coatings obtained by electrophoretic deposition. Key Eng Mater 654:3–7. https://doi.org/10.4028/www.scientific.net/KEM.654.165

    Article  Google Scholar 

  24. Moskalewicz T, Zych A, Ukaszczyk A, Cholewa-Kowalska K, Kruk A, Dubiel B, Radziszewska A, Berent K, Gajewska M (2017) Electrophoretic deposition, microstructure, and corrosion resistance of porous sol-gel glass/polyetheretherketone coatings on the Ti-13Nb-13Zr alloy. Metall Mater Trans A Phys Metall Mater Sci 48:2660–2673. https://doi.org/10.1007/s11661-017-4030-0

    Article  Google Scholar 

  25. Rehman MAU, Bastan FE, Haider B, Boccaccini AR, Rehman MAU, Bastan FE, Haider B, Boccaccini AR (2017) Electrophoretic deposition of PEEK/bioactive glass composite coatings for orthopedic implants: a design of experiments (DoE) study. Mater Des 130:223–230. https://doi.org/10.1016/j.matdes.2017.05.045

    Article  Google Scholar 

  26. Moskalewicz T, Seuss S, Boccaccini AR (2013) Microstructure and properties of composite polyetheretherketone/Bioglass® coatings deposited on Ti–6Al–7Nb alloy for medical applications. Appl Surf Sci 273:62–67. https://doi.org/10.1016/j.apsusc.2013.01.174

    Article  Google Scholar 

  27. Sak A, Moskalewicz T, Zimowski S, Cieniek Ł, Dubiel B, Radziszewska A, Kot M, Łukaszczyk A (2016) Influence of polyetheretherketone coatings on the Ti-13Nb-13Zr titanium alloy’s bio-tribological properties and corrosion resistance. Mater Sci Eng C 63:52–61. https://doi.org/10.1016/j.msec.2016.02.043

    Article  Google Scholar 

  28. Ur Rehman MA, Ferraris S, Goldmann WH, Perero S, Bastan FE, Nawaz Q, Di Confiengo GG, Ferraris M, Boccaccini AR (2017) Antibacterial and bioactive coatings based on radio frequency co-sputtering of silver nanocluster-silica coatings on PEEK/bioactive glass layers obtained by electrophoretic deposition. ACS Appl Mater Interfaces 9:32489–32497. https://doi.org/10.1021/acsami.7b08646

    Article  Google Scholar 

  29. Fritsche A, Haenle M, Zietz C, Mittelmeier W, Neumann HG, Heidenau F, Finke B, Bader R (2009) Mechanical characterization of anti-infectious, anti-allergic, and bioactive coatings on orthopedic implant surfaces. J Mater Sci 44:5544–5551. https://doi.org/10.1007/s10853-009-3776-1

    Article  Google Scholar 

  30. Sarkar P, C.M. Division, L. Combustion (2014) ( b ) Monday , October 6 , 2014 Keynote Session I : Fundamentals of EPD I Monday , October 6 , 2014 Session I : Fundamentals of EPD I

  31. Clavijo S, Membrives F, Boccaccini AR, Santillán MJ (2014) Characterization of polyetheretherketone particle suspensions for electrophoretic deposition. J Appl Polym Sci 131:2–7. https://doi.org/10.1002/app.40953

    Article  Google Scholar 

  32. Anné G, Vanmeensel K, Vleugels J, Van Der Biest O (2005) A mathematical description of the kinetics of the electrophoretic deposition process for Al 2O 3-based suspensions. J Am Ceram Soc 88:2036–2039. https://doi.org/10.1111/j.1551-2916.2005.00387.x

    Article  Google Scholar 

  33. Rehman MAU, Munawar MA, Nawaz Q, Anwar MY (2018) Design of Experiment Approach in the Industrial Gas Carburizing Process, in: V.B.T.-S.A.W.E. on D. of E.A. to C.P. Silva (Ed.), Stat. Approaches With Emphas. Des. Exp. Appl. to Chem. Process., InTech, Rijeka, pp 99–113. https://doi.org/10.5772/intechopen.72822.

  34. Moskalewicz T, Zimowski S, Zych A, Łukaszczyk A, Reczyńska K, Pamuła E (2018) Electrophoretic deposition, microstructure and selected properties of composite alumina/polyetheretherketone coatings on the Ti-13Nb-13Zr alloy. J Electrochem Soc 165:D116–D128. https://doi.org/10.1149/2.0681803jes

    Article  Google Scholar 

  35. D3359-07 (2013) Standard test methods for measuring adhesion by tape test. Astm 1–7. https://doi.org/10.1520/D3359-09E02.2.

  36. Practice S (2014) Standard practice for qualitative adhesion testing of metallic coatings 1. https://doi.org/10.1520/B0571-97R13.Copyright

    Book  Google Scholar 

  37. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27:2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  38. Virk RS, Atiq M, Rehman U, Munawar MA, Schubert DW, Goldmann WH, Dusza J, Boccaccini AR (2019) Curcumin-containing orthopedic implant coatings deposited on poly-ether-ether-ketone/bioactive glass/hexagonal boron nitride layers by electrophoretic deposition. Coatings 9

  39. Parchovianský M, Balko J, Švančárek P, Sedláček J, Dusza J, Lofaj F, Galusek D (2017) Mechanical properties and sliding wear behaviour of Al2O3-SiC nanocomposites with 3–20 vol% SiC. J Eur Ceram Soc 37:4297–4306. https://doi.org/10.1016/j.jeurceramsoc.2017.04.051

    Article  Google Scholar 

  40. Balázsi C, Fogarassy Z, Tapasztó O, Kailer A, Schröder C, Parchoviansky M, Galusek D, Dusza J, Balázsi K (2017) Si3N4/graphene nanocomposites for tribological application in aqueous environments prepared by attritor milling and hot pressing. J Eur Ceram Soc 37:3797–3804. https://doi.org/10.1016/J.JEURCERAMSOC.2017.03.022

    Article  Google Scholar 

  41. Nawaz Q, Atiq M, Rehman U, Roether JA, Yufei L, Grünewald A, Detsch R, Boccaccini AR (2019) Bioactive glass based sca ff olds incorporating gelatin / manganese doped mesoporous bioactive glass nanoparticle coating. Ceram Int 45:14608–14613. https://doi.org/10.1016/j.ceramint.2019.04.179

    Article  Google Scholar 

  42. Yang Y, Zhou J, Detsch R, Taccardi N, Heise S, Virtanen S, Boccaccini AR (2018) Biodegradable nanostructures: degradation process and biocompatibility of iron oxide nanostructured arrays. Mater Sci Eng C 85:203–213. https://doi.org/10.1016/j.msec.2017.12.021

    Article  Google Scholar 

  43. Ureña J, Tsipas S, Jiménez-Morales A, Gordo E, Detsch R, Boccaccini AR (2018) Cellular behaviour of bone marrow stromal cells on modified Ti-Nb surfaces. Mater Des 140:452–459. https://doi.org/10.1016/j.matdes.2017.12.006

    Article  Google Scholar 

  44. Zhang XL, Jiang ZH, Yao ZP, Song Y, Wu ZD (2009) Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros Sci 51:581–587. https://doi.org/10.1016/j.corsci.2008.12.005

    Article  Google Scholar 

  45. Pishbin F, Mouriño V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR, Mourino V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR, Mouriño V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2014) Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl Mater Interfaces 6:8796–8806. https://doi.org/10.1021/am5014166

    Article  Google Scholar 

  46. Pishbin F, Mouriño V, Gilchrist JB, McComb DW, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2013) Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater 9:7469–7479. https://doi.org/10.1016/j.actbio.2013.03.006

    Article  Google Scholar 

  47. Radda’a NS, Goldmann WH, Detsch R, Roether JA, Cordero-Arias L, Virtanen S, Moskalewicz T, Boccaccini AR (2017) Electrophoretic deposition of tetracycline hydrochloride loaded halloysite nanotubes chitosan/bioactive glass composite coatings for orthopedic implants. Surf Coat Technol 327:146–157. https://doi.org/10.1016/j.surfcoat.2017.07.048

    Article  Google Scholar 

  48. Jones JR (2015) Reprint of: Review of bioactive glass: from Hench to hybrids. Acta Biomater 23:S53–S82. https://doi.org/10.1016/j.actbio.2015.07.019

    Article  Google Scholar 

Download references

Funding

MAUR thanks Higher Education Commission of Pakistan for providing the funds under SRGP scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Atiq Ur Rehman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ur Rehman, M.A., Bastan, F.E., Nawaz, A. et al. Electrophoretic deposition of PEEK/bioactive glass composite coatings on stainless steel for orthopedic applications: an optimization for in vitro bioactivity and adhesion strength. Int J Adv Manuf Technol 108, 1849–1862 (2020). https://doi.org/10.1007/s00170-020-05456-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05456-x

Keywords

Navigation