Skip to main content

Advertisement

Log in

Boron-Doped Hydroxyapatite Coatings on NiTi Alloys Using the Electrophoretic Deposition Method: Enhanced Corrosion and Adhesion Performances

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 19 April 2022

This article has been updated

Abstract

Metallic implants are functionalized with coatings due to the need to protect against biological corrosion in the body. Hydroxyapatite (HAp) has desirable biocompatibility and structural properties, but poor mechanical properties limit its use as a standalone coating. In this study, boron-doped hydroxyapatite (B-HAp) biocomposites containing 5, 10, and 15% boron by weight were synthesized by the sol-gel method and applied as a coating to NiTi using electrophoretic deposition (EPD). The deposition was carried out for 60, 90, and 120 s, and sintering at 750 °C for 75 minutes under vacuum. The coated substrates were then characterized by XRD, SEM, and FT-IR, and their adhesion strengths and in-vitro corrosion behaviors in simulated body fluid were compared with uncoated samples. The results showed that the microporous powders formed well-bonded structures, which positively affect adhesion strength. The highest adhesion strength (30 MPa) and corrosion resistance were achieved with 15 wt.% B-HAP coating at 120 s deposition time and 76.5 μm coating thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. K.M.R. Nuss and B. von Rechenberg, Biocompatibility Issues with Modern Implants in Bone-A Review for Clinical Orthopedics, Open Orthop. J., 2008, 2(1), p 66–78. https://doi.org/10.2174/1874325000802010066

    Article  Google Scholar 

  2. A.F. Mavrogenis, R. Dimitriou, J. Parvizi, and G.C. Babis, Biology of Implant Osseointegration. J. Musculoskelet. Neuronal Interact., n.d., 2009, 9(2), p 61–71.http://www.ncbi.nlm.nih.gov/pubmed/19516081

  3. B. Dikici, Z. Esen, O. Duygulu, and S.G. (Koc), Corrosion of Metallic Biomaterials, Advances in Metallic Biomaterials: Tissues, Materials and Biological Reactions, M. Niinomi, T. Narushima, and M. Nakai, Eds., (Berlin, Heidelberg), Springer-Verlag Berlin Heidelberg, (2015), p 275–303, doi:https://doi.org/10.1007/978-3-662-46836-4

  4. M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants–A Review, Prog. Mater. Sci., 2009, 54(3), p 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  5. E. Ergun, C. Elmas, and N.E. Olcay, “Properties of Bioceramics Materials and Their Applications,” 10th Denizli Mater Symp and Exhibition, (Denizli, Turkey), Pamukkale Üniversitesi, (2004), p 25–41

  6. T.W. Duerig, K.N. Melton and J.L. Proft, Wide Hysteresis Shape Memory Alloys, Engineering Aspects of Shape Memory Alloys, 1990 https://doi.org/10.1016/B978-0-7506-1009-4.50015-9

    Article  Google Scholar 

  7. B. O’Brien, F.M. Weafer and M.S. Bruzzi, Shape Memory Alloys for Use in Medicine, Comprehensive Biomaterials II, Elsevier, 2017 https://doi.org/10.1016/B978-0-12-803581-8.10084-0

    Article  Google Scholar 

  8. D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, “Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications,” (Berlin, Heidelberg), Springer Berlin Heidelberg, (2001), doi:https://doi.org/10.1007/978-3-642-56486-4

  9. H. Huang, Ion Release from NiTi Orthodontic Wires in Artificial Saliva with Various Acidities, Biomaterials, 2003, 24(20), p 3585–3592. https://doi.org/10.1016/S0142-9612(03)00188-1

    Article  CAS  Google Scholar 

  10. B. Aksakal, M. Kom, H.B. Tosun and M. Demirel, Influence of Micro- and Nano-Hydroxyapatite Coatings on the Osteointegration of Metallic (Ti6Al4 V) and Bioabsorbable Interference Screws: An in Vivo Study, Eur. J. Orthop. Surg. Traumatol., 2014, 24(5), p 813–819. https://doi.org/10.1007/s00590-013-1236-8

    Article  CAS  Google Scholar 

  11. Y. Say and B. Aksakal, Effects of Hydroxyapatite/Zr and Bioglass/Zr Coatings on Morphology and Corrosion Behaviour of Rex-734 Alloy, J. Mater. Sci. Mater. Med., 2016, 27(6), p 105. https://doi.org/10.1007/s10856-016-5716-3

    Article  CAS  Google Scholar 

  12. R. Ternane, M.T. Cohen-Adad, G. Panczer, C. Goutaudier, N. Kbir-Ariguib, M. Trabelsi-Ayedi, P. Florian and D. Massiot, Introduction of Boron in Hydroxyapatite: Synthesis and Structural Characterization, J. Alloys Compd., 2002, 333(1–2), p 62–71. https://doi.org/10.1016/S0925-8388(01)01558-4

    Article  CAS  Google Scholar 

  13. S.S. Hakki, B.S. Bozkurt and E.E. Hakki, Boron Regulates Mineralized Tissue-Associated Proteins in Osteoblasts (MC3T3-E1), J. Trace Elem. Med. Biol., 2010, 24(4), p 243–250. https://doi.org/10.1016/j.jtemb.2010.03.003

    Article  CAS  Google Scholar 

  14. A.E. Pazarçeviren, A. Tezcaner, D. Keskin, S.T. Kolukısa, S. Sürdem and Z. Evis, Boron-Doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering, Biol. Trace Elem. Res., 2021, 199(3), p 968–980. https://doi.org/10.1007/s12011-020-02230-8

    Article  CAS  Google Scholar 

  15. T.A. Devirian and S.L. Volpe, The Physiological Effects of Dietary Boron, Crit. Rev. Food Sci. Nutr., 2003, 43(2), p 219–231. https://doi.org/10.1080/10408690390826491

    Article  CAS  Google Scholar 

  16. B. Dikici, M. Niinomi, M. Topuz, Y. Say, B. Aksakal, H. Yilmazer and M. Nakai, Synthesis and Characterization of Hydroxyapatite/TiO2 Coatings on the β-Type Titanium Alloys with Different Sintering Parameters Using Sol-Gel Method, Prot. Met. Phys. Chem. Surfaces, 2018, 54(3), p 457–462. https://doi.org/10.1134/S2070205118030255

    Article  CAS  Google Scholar 

  17. Y. Say, B. Aksakal and B. Dikici, Effect of Hydroxyapatite/SiO2 Hybride Coatings on Surface Morphology and Corrosion Resistance of REX-734 Alloy, Ceram Int., 2016, 42(8), p 10151–10158.

    Article  CAS  Google Scholar 

  18. B. Aksakal, Y. Say, Ç. Buyukpinar and S. Bakirdere, Biodegradation of Hydroxyapatite Coated Rex-734 Alloy with Silver and Selenium/Chitosan Substitutions, Vitro Analysis. Ceram. Int., 2017, 43(15), p 12609–12615.

    Article  CAS  Google Scholar 

  19. N. Aslan and B. Aksakal, Effect of Graphene Reinforcement on Hybrid Bioceramic Coating Deposited on the Produced Porous Ti64 Alloys, J. Porous Mater., 2021 https://doi.org/10.1007/s10934-021-01081-5

    Article  Google Scholar 

  20. G. Feng, X. Cheng, D. Xie, K. Wang and B. Zhang, Fabrication and Characterization of Nano Prism-like Hydroxyapatite Coating on Porous Titanium Substrate by Combined Biomimetic-Hydrothermal, Method. Mater. Lett, 2016, 163, p 134–137. https://doi.org/10.1016/j.matlet.2015.10.063

    Article  CAS  Google Scholar 

  21. M. Mehrali, A.R. Akhiani, S. Talebian, M. Mehrali, S.T. Latibari, A. Dolatshahi-Pirouz, and H.S.C. Metselaar, Electrophoretic Deposition of Calcium Silicate-Reduced Graphene Oxide Composites on Titanium Substrate, J. Eur. Ceram. Soc., (2016).

  22. B. Wu, S. Xiong, Y. Guo, Y. Chen, P. Huang and B. Yang, Tooth-Colored Bioactive Titanium Alloy Prepared with Anodic Oxidation Method for Dental Implant Application, Mater. Lett., 2019, 248, p 134–137. https://doi.org/10.1016/j.matlet.2019.04.015

    Article  CAS  Google Scholar 

  23. L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li, Z. Xing and Y. Chen, A Tough Graphene Nanosheet/Hydroxyapatite Composite with Improved in Vitro Biocompatibility, Carbon N., 2013, 61, p 105–115. https://doi.org/10.1016/j.carbon.2013.04.074

    Article  CAS  Google Scholar 

  24. O. Yigit, B. Dikici, T.C. Senocak and N. Ozdemir, One-Step Synthesis of Nano-Hydroxyapatite/Graphene Nanosheet Hybrid Coatings on Ti6Al4V Alloys by Hydrothermal Method and Their in-Vitro Corrosion Responses, Surf. Coatings Technol., 2020, 394, p 125858. https://doi.org/10.1016/j.surfcoat.2020.125858

    Article  CAS  Google Scholar 

  25. F. Songur, B. Dikici, M. Niinomi and E. Arslan, The Plasma Electrolytic Oxidation (PEO) Coatings to Enhance in-Vitro Corrosion Resistance of Ti–29Nb–13Ta–4.6Zr Alloys: The Combined Effect of Duty Cycle and the Deposition Frequency, Surf. Coatings Technol., 2019, 374, p 345–354. https://doi.org/10.1016/j.surfcoat.2019.06.025

    Article  CAS  Google Scholar 

  26. B. Aksakal and A.R. Boccaccini, Electrophoretic Deposition of Selenium, Mater. Lett., 2012, 76, p 177–180. https://doi.org/10.1016/j.matlet.2012.02.059

    Article  CAS  Google Scholar 

  27. E. Mohseni, E. Zalnezhad and A.R. Bushroa, Comparative Investigation on the Adhesion of Hydroxyapatite Coating on Ti–6Al–4V Implant: A Review Paper, Int. J. Adhes. Adhes., 2014, 48, p 238–257. https://doi.org/10.1016/j.ijadhadh.2013.09.030

    Article  CAS  Google Scholar 

  28. X. Meng, T.-Y. Kwon, Y. Yang, J.L. Ong and K.-H. Kim, Effects of Applied Voltages on Hydroxyapatite Coating of Titanium by Electrophoretic Deposition, J. Biomed. Mater. Res. Part B Appl. Biomater., 2006 https://doi.org/10.1002/jbm.b.30497

    Article  Google Scholar 

  29. Y. Göncü, M. Geçgin, F. Bakan and N. Ay, Electrophoretic Deposition of Hydroxyapatite-Hexagonal Boron Nitride Composite Coatings on Ti Substrate, Mater. Sci. Eng. C, 2017, 79, p 343–353. https://doi.org/10.1016/j.msec.2017.05.023

    Article  CAS  Google Scholar 

  30. A. Jemat, M.J. Ghazali, M. Razali and Y. Otsuka, Surface Modifications and Their Effects on Titanium Dental Implants, Biomed Res. Int., 2015, 2015, p 1–11. https://doi.org/10.1155/2015/791725

    Article  CAS  Google Scholar 

  31. A. Wennerberg, C. Hallgren, C. Johansson, and S. Danelli, A Histomorphometric Evaluation of Screw-Shaped Implants Each Prepared with Two Surface Roughnesses, Clin. Oral Implants Res., (1998)

  32. H. Farnoush, G. Aldıç and H. Çimenoğlu, Functionally Graded HA–TiO2 Nanostructured Composite Coating on Ti–6Al–4V Substrate via Electrophoretic Deposition, Surf. Coatings Technol., 2015, 265, p 7–15.

    Article  CAS  Google Scholar 

  33. T. Kokubo and H. Takadama, How Useful Is SBF in Predicting in Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  34. S. Papavinasam, Electrochemical Polarization Techniques for Corrosion Monitoring, Techniques for Corrosion Monitoring, 2008 https://doi.org/10.1533/9781845694050.1.49

    Article  Google Scholar 

  35. O. Albayrak and M. Ugurlu, Preparation and Characterization of Boron Doped Hydroxyapatite: Effects of Boron Content and Sintering Temperature on Structure and Mechanical Properties, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg., 2016 https://doi.org/10.17341/gummfd.59636

    Article  Google Scholar 

  36. H. Güler, G. Gündoğmaz, F. Kurtuluş, G. Çelik and ŞS. Gacanoğlu, Solid State Synthesis of Calcium Borohydroxyapatite, Solid State Sci., 2011, 13(11), p 1916–1920. https://doi.org/10.1016/j.solidstatesciences.2011.08.016

    Article  CAS  Google Scholar 

  37. S. Khoshsima, A. Alshemary, A. Tezcaner, S. Surdem and Z. Evis, Impact of B2O3 and La2O3 Addition on Structural, Mechanical and Biological Properties of Hydroxyapatite, Process. Appl. Ceram., 2018, 12(2), p 143–152. https://doi.org/10.2298/PAC1802143K

    Article  CAS  Google Scholar 

  38. O. Albayrak, Structural and Mechanical Characterization of Boron Doped Biphasic Calcium Phosphate Produced by Wet Chemical Method and Subsequent Thermal Treatment, Mater. Charact., 2016, 113, p 82–89. https://doi.org/10.1016/j.matchar.2016.01.006

    Article  CAS  Google Scholar 

  39. A. Herrera, J. Mateo, J. Gil-Albarova, A. Lobo-Escolar, E. Ibarz, S. Gabarre, Y. Más and L. Gracia, Cementless Hydroxyapatite Coated Hip Prostheses, Biomed Res. Int., 2015, 2015, p 1–13. https://doi.org/10.1155/2015/386461

    Article  CAS  Google Scholar 

  40. D. Qiu, A. Wang and Y. Yin, Characterization and Corrosion Behavior of Hydroxyapatite/Zirconia Composite Coating on NiTi Fabricated by Electrochemical Deposition, Appl. Surf. Sci., 2010, 257(5), p 1774–1778. https://doi.org/10.1016/j.apsusc.2010.09.014

    Article  CAS  Google Scholar 

  41. D. Qiu, L. Yang, Y. Yin and A. Wang, Preparation and Characterization of Hydroxyapatite/Titania Composite Coating on NiTi Alloy by Electrochemical Deposition, Surf. Coatings Technol., 2011, 205(10), p 3280–3284.

    Article  CAS  Google Scholar 

  42. H. Maleki-Ghaleh, V. Khalili, J. Khalil-Allafi and M. Javidi, Hydroxyapatite Coating on NiTi Shape Memory Alloy by Electrophoretic Deposition Process, Surf. Coatings Technol., 2012, 208, p 57–63. https://doi.org/10.1016/j.surfcoat.2012.08.001

    Article  CAS  Google Scholar 

  43. K. Zhang, H. Zhang, P. Liu, C. Zhang, W. Li, X. Chen and F. Ma, Electrophoretic Deposition of Graphene Oxide on NiTi Alloy for Corrosion Prevention, Vacuum, 2019, 161, p 276–282. https://doi.org/10.1016/j.vacuum.2018.12.032

    Article  CAS  Google Scholar 

  44. C.T. Kwok, P.K. Wong, F.T. Cheng and H.C. Man, Characterization and Corrosion Behavior of Hydroxyapatite Coatings on Ti6Al4V Fabricated by Electrophoretic Deposition, Appl. Surf. Sci., 2009, 255(13–14), p 6736–6744.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Aksakal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoy, M.E., Aksakal, B., Aslan, N. et al. Boron-Doped Hydroxyapatite Coatings on NiTi Alloys Using the Electrophoretic Deposition Method: Enhanced Corrosion and Adhesion Performances. J. of Materi Eng and Perform 30, 7365–7375 (2021). https://doi.org/10.1007/s11665-021-05968-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05968-x

Keywords

Navigation