Skip to main content
Log in

A predictive approach to investigating effects of ultrasonic-assisted burnishing process on surface performances of shaft targets

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The ultrasonic-assisted burnishing process (UABP) is an effective surface finishing technology that obtains compressive residual stress and surface work hardening and decreases surface roughness. A three-dimensional explicit nonlinear finite element model (FEM) of the UABP on a shaft specimen was established and calibrated in this paper. A comparison of finite element (FE) simulation results with experimental data showed good agreement in terms of the predicted residual stress in both tangential and axial directions. The established FEM explores the influence of treatment parameters, such as ball diameters, static forces, spindle speeds, ultrasonic frequencies, vibration amplitudes, and friction coefficients, on the resultant profile of residual stress and equivalent plastic deformation. This dynamic explicit FE method is an effective approach to investigate the UABP, to relate the processing parameters with surface integrity, including the depth of residual stress and work hardening of objective surfaces, and to guide the design of the UABP parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Zhao J, Liu ZQ (2016) Investigations of ultrasonic frequency effects on surface deformation in rotary ultrasonic roller burnishing Ti-6Al-4V. Mater Des 107:238–249. https://doi.org/10.1016/j.matdes.2016.06.024

    Article  Google Scholar 

  2. Teimouri R, Amini S, Guagliano M (2019) Analytical modeling of ultrasonic surface burnishing process: evaluation of residual stress field distribution and strip deflection. Mat Sci Eng A-Struct 747:208–224. https://doi.org/10.1016/j.msea.2019.01.007

    Article  Google Scholar 

  3. Zhang M, Liu ZH, Deng J, Yang MJ, Dai QL, Zhang TZ (2019) Optimum design of compressive residual stress field caused by ultrasonic surface burnishing with a mathematical model. Appl Math Model 76:800–831. https://doi.org/10.1016/j.apm.2019.07.009

    Article  MathSciNet  Google Scholar 

  4. Travieso-Rodriguez JA, Gomez-Gras G, Dessein G, Carrillo F, Alexis J, Jorba-Peiro J, Aubazac N (2015) Effects of a ball-burnishing process assisted by vibrations in G10380 steel specimens. Int J Adv Manuf Technol 81:1757–1765. https://doi.org/10.1007/s00170-015-7255-3

    Article  Google Scholar 

  5. Zhang QL, Hu ZQ, Su WW, Zhou HL, Liu CX, Yang YL, Qi XW (2017) Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface burnishing technology. Surf Coat Technol 321:64–73. https://doi.org/10.1016/j.surfcoat.2017.04.052

    Article  Google Scholar 

  6. Liu CS, Liu DX, Zhang XH, He GY, Xu XC, Ao N, Ma A, Liu D (2019) On the influence of ultrasonic surface burnishing process on surface integrity and fatigue performance of Ti-6Al-4V alloy. Surf Coat Technol 370:24–34. https://doi.org/10.1016/j.surfcoat.2019.04.080

    Article  Google Scholar 

  7. Ye H, Sun X, Liu Y, Rao XX, Gu Q (2019) Effect of ultrasonic surface burnishing process on mechanical properties and corrosion resistance of AZ31B mg alloy. Surf Coat Technol 372:288–298. https://doi.org/10.1016/j.surfcoat.2019.05.035

    Article  Google Scholar 

  8. Skalski K, Morawski A, Przybylski W (1995) Analysis of contact elastic–plastic strains during the process of burnishing. Int J Mech Sci 37:461–472. https://doi.org/10.1016/0020-7403(94)00083-V

    Article  MATH  Google Scholar 

  9. Salahshoor M, Guo YB (2013) Process mechanics in ball burnishing biomedical magnesium–calcium alloy. Int J Adv Manuf Technol 64(1–4):133–144. https://doi.org/10.1007/s00170-012-4024-4

    Article  Google Scholar 

  10. Stalin John MR, Welsoon Wilson A, Prasad Bhardwaj A, Abraham A, Vinayagam BK (2016) An investigation of ball burnishing process on CNC lathe using finite element analysis. Simul Model Pract Theory 62:88–101. https://doi.org/10.1016/j.simpat.2016.01.004

    Article  Google Scholar 

  11. Sayahi M, Sghaier S, Belhadjsalah H (2013) Finite element analysis of ball burnishing process: comparisons between numerical results and experiments. Int J Adv Manuf Technol 67:1665–1673. https://doi.org/10.1007/s00170-012-4599-9

    Article  Google Scholar 

  12. Liu Y, Zhao X, Wang D (2014) Effective FE model to predict surface layer characteristics of ultrasonic surface burnishing with experimental validation. J Mater Sci Technol 30(6):627–636. https://doi.org/10.1179/1743284713Y.0000000396

    Article  Google Scholar 

  13. Mohammadi F, Sedaghati R, Bonakdar A (2014) Finite element analysis and design optimization of low plasticity burnishing process. Int J Adv Manuf Technol 70:1337–1354. https://doi.org/10.1007/s00170-013-5406-y

    Article  Google Scholar 

  14. Manouchehrifar A, Alasvand K (2012) Finite element simulation of deep burnishing and evaluate the influence of parameters on residual stress. 5th WSEAS international conference: 121-127. https://www.researchgate.net/publication/268436071

  15. Courtin S, Henaff-Gardin C, Bezine G (2003) Finite element simulation of roller burnishing in crankshafts. 2003 wit press. https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/39/1451

  16. Perenda J, Trajkovski J, Zerovnik A, Prebil I (2016) Modeling and experimental validation of the surface residual stresses induced by deep burnishing and presetting of a torsion bar. Int J Mater Form 9(4):435–448. https://doi.org/10.1007/s12289-015-1230-2

    Article  Google Scholar 

  17. Bougharriou A, Sai K, Bouzid W (2010) Finite element modelling of burnishing process. Mater Technol 25(1):56–62. https://doi.org/10.1179/175355509X387110

    Article  Google Scholar 

  18. Kamgaing Souop L, Daidie A, Landon Y, Senatore J, Ritou M (2019) Investigation of aluminum alloy properties during helical roller burnishing through finite element simulations and experiments. Advances on Mechanics, Design Engineering and Manufacturing II LNME:440–450. https://doi.org/10.1007/978-3-030-12346-8_43

    Chapter  Google Scholar 

  19. Song HX, Kong ZY, Sun WZ (2014) Research on processing tool in ultrasonic gear flank enhancement. Comput Simul 31(2):307–319

    Google Scholar 

  20. Gao QQ (2014) Design and research of ultrasonic nanometer precision burnishing device. Dissertation, East China Jiaotong University

  21. Balland P, Tabourot L, Degre F, Moreau V (2013) An investigation of the mechanics of roller burnishing through finite element simulation and experiments. Int J Mach Tool Manu 65:29–36. https://doi.org/10.1016/j.ijmachtools.2012.09.002

    Article  Google Scholar 

  22. Pang JZ, Li BZ, Yang JG, Zhou ZX (2011) Temperature simulation in high-speed grinding by using deform-3D. Manuf Process Technol 189-193:1849–1853. https://doi.org/10.4028/www.scientific.net/AMR.189-193.1849

    Article  Google Scholar 

  23. Zhang M, Zhang YX, Zhou Y (2019) Theoretical and experimental analysis of compressive residual stress field on 6061 aluminum alloy after ultrasonic surface rolling process. P I Mech Eng C-J Mec 233(15):5363–5376

    Article  Google Scholar 

  24. Teimouri R, Amini S (2016) Analytical modeling of ultrasonic surface burnishing process: evaluation of through depth localized strain. Int J Mech Sci 151:118–132. https://doi.org/10.1016/j.ijmecsci.2018.11.008

    Article  Google Scholar 

  25. Abouridouane M, Laschet G, Kripak V, Texeira A, Dierdorf J, Prahl P, Klocke F (2017) Cutting simulations of two gear steels with microstructure dependent material laws. Procedia CIRP 58:549–554. https://doi.org/10.1016/j.procir.2017.03.332

    Article  Google Scholar 

  26. Azimi M, Mirjavadi SS, Asli SA (2016) Investigation of mesh sensitivity influence to determine crack characteristic by finite element methods. J Fail Anal Prev 16(3):506–512. https://doi.org/10.1007/s11668-016-0117-y

    Article  Google Scholar 

  27. Azimi M, Mirjavadi SS, Asli SA, Hamouda AMS (2017) Fracture analysis of a special cracked lap shear (CLS) specimen with utilization of virtual crack closure technique (VCCT) by finite element methods. J Fail Anal Prev 17(2):304–314. https://doi.org/10.1007/s11668-017-0243-1

    Article  Google Scholar 

  28. Sartkulvanich P, Altan T, Jasso F, Rodriguez C (2007) Finite element modeling of hard roller burnishing: an analysis on the effects of process parameters upon surface finish and residual stresses. J Manuf Sci Eng 129:705–716. https://doi.org/10.1115/1.2738121

    Article  Google Scholar 

  29. Azimi M, Mirjavadi SS, Salandari-Rabori (2017) Effect of temperature on microstructural evolution and subsequent enhancement of mechanical properties in a backward extruded magnesium alloy. Int J Adv Manuf Technol 95:3155–3166. https://doi.org/10.1007/s00170-017-1343-5

    Article  Google Scholar 

  30. Zhang M, Deng J, Liu ZH, Zhou Y (2019) Investigation into contributions of static and dynamic loads to compressive residual stress fields caused by ultrasonic surface rolling. Int J Mech Sci 163:105144. https://doi.org/10.1016/j.ijmecsci.2019.105144

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial supports from the China National Natural Science Fund (11602227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Deng or Meng Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yang, M., Deng, J. et al. A predictive approach to investigating effects of ultrasonic-assisted burnishing process on surface performances of shaft targets. Int J Adv Manuf Technol 106, 4203–4219 (2020). https://doi.org/10.1007/s00170-019-04902-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04902-9

Keywords

Navigation