Skip to main content
Log in

Modeling and experimental validation of the surface residual stresses induced by deep rolling and presetting of a torsion bar

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

During the production of torsion bars, two different mechanical processes of inducing the residual stresses into the torsion bar are used: the presetting of the torsion bar and the deep rolling of the torsion bar. The process of presetting the torsion bar is carried out by twisting the torsion bar to the desired angle and releasing it to the new residual angle position. With controlled overstraining, favorable residual shear stresses are induced into the torsion bar, so the material is strain hardened and the yield point of the material is shifted and increased in the stress and strain space. The objective of the deep rolling process is to introduce compressive residual stresses into near-surface regions in order to increase the fatigue strength of the torsion bar. These two processes influence each other. The final level of residual stresses depends on the production sequence of these two processes and the production parameters of each process. The correct production sequence of these two operations and distribution of beneficial residual stress was simulated using the finite element (FE) method. To validate this model, the predicted surface residual stresses were compared by the X-ray diffraction (XRD) measurements of residual stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Almen J (1951) Torsional Fatigue Failures. Prod Eng 22:167–182

    Google Scholar 

  2. Swift W a C (1976) On the scragging of circular section bars and tubes. J Strain Anal Eng Des 11:69–77. doi:10.1243/03093247V112069

    Article  Google Scholar 

  3. Eerden RL Van, Cambell K, Holly ML, et al. (2000) Manual on Design and Manufacture of Torsion Bar Springs and Stabilizer Bars, SAE HS-796. SAE International

  4. Altenberger I, Scholtes B, Martin U, Oettel H (1999) Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304. Mater Sci Eng A 264:1–16. doi:10.1016/S0921-5093(98)01121-6

    Article  Google Scholar 

  5. Schulze V (2006) Modern mechanical surface treatment. Wiley-VCH Verlag GmbH & Co., Weinheim

    Google Scholar 

  6. Swift W a C (1978) On the measurement of residual shear stress in scragged torsion bars. J Strain Anal Eng Des 13:157–163. doi:10.1243/03093247V133157

    Article  Google Scholar 

  7. Fujczak R (1991) Correlation between Machine Twist Angle and Unit Twist Angle in Calculating Shear Stresses for Elastic and Plastic Strains in Torsion

  8. Kim HS (2001) Finite element analysis of torsional deformation. Mater Sci Eng A 299:305–308. doi:10.1016/S0921-5093(00)01416-7

    Article  Google Scholar 

  9. Brabie G (2003) An analysis of the shearing stresses distribution on the cross-section of the twisted round bars. J Mater Process Technol 142:224–230. doi:10.1016/S0924-0136(03)00584-3

    Article  Google Scholar 

  10. Rees DW a (2009) Descriptions of reversed yielding of a solid circular bar in torsion. Proc Inst Mech Eng Part C J Mech Eng Sci 223:557–571. doi:10.1243/09544062JMES919

    Article  Google Scholar 

  11. Wang H, Rui Q, He X (2007) The prediction technology study of fatigue life for key parts of a tracked vehicle’s suspension system. Front Mech Eng China 2:68–71. doi:10.1007/s11465-007-0011-0

    Article  Google Scholar 

  12. Skalski K, Morawski A, Przybylski W (1995) Analysis of contact elastic–plastic strains during the process of burnishing. Int J Mech 37:461–472

    Article  MATH  Google Scholar 

  13. Guagliano M, Vergani L (1995) Residual stresses induced by deep rolling in notched components. Trans Eng Sci 8:109–119

    Google Scholar 

  14. Mayer HM, Achmus C, Pyzalla A (2000) Increase of fatigue strength of crankshafts by deep-rolling and induction hardening induced beneficial residual stress states - experimental determination and FEM simulation. Mater Week 2000:1–9

    Google Scholar 

  15. Demurger J, Forestier R, Kieber B, Lasne P (2006) Deep rolling process simulation: impact of kinematic hardening on residual stresses. Proc ESAFORM 1–5

  16. Majzoobi GH, Azadikhah K, Nemati J (2009) The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6. Mater Sci Eng A 516:235–247. doi:10.1016/j.msea.2009.03.020

    Article  Google Scholar 

  17. Bäcker V, Klocke F, Wegner H et al (2010) Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling. IOP Conf Ser Mater Sci Eng 10:1–10. doi:10.1088/1757-899X/10/1/012134

    Article  Google Scholar 

  18. Manouchehrifar A, Alasvand K (2012) Finite element simulation of deep rolling and evaluate the influence of parameters on residual stress. 5th WSEAS Int. Conf. Cambridge, pp 61–67

  19. Balland P, Tabourot L, Degre F, Moreau V (2013) An investigation of the mechanics of roller burnishing through finite element simulation and experiments. Int J Mach Tools Manuf 65:29–36. doi:10.1016/j.ijmachtools.2012.09.002

    Article  Google Scholar 

  20. Trauth D, Klocke F, Mattfeld P, Klink A (2013) Time-efficient Prediction of the Surface Layer State after Deep Rolling using Similarity Mechanics Approach. Procedia CIRP 9:29–34. doi:10.1016/j.procir.2013.06.163

    Article  Google Scholar 

  21. Werke M (2009) Simulation of manufacturing sequences for verification of product properties. KTH, Stockholm

    Google Scholar 

  22. Afazov S (2009) Simulation of manufacturing processes and manufacturing chains using finite element techniques. The University of Nottingham

  23. Altenberger I (2005) Deep Rolling—The Past, the Present and the Future. Proc 9th Int Conf Shot Peen 144–155

  24. Klocke F, Bäcker V, Wegner H (2009) Influence of process and geometry parameters on the surface layer state after roller burnishing of IN718. Proc Natl Acad Sci U S A. doi:10.1007/s1

    Google Scholar 

  25. Klocke F, Shirobokov A, Mattfeld P, Feuerhack A (2014) Festwalzen von Feinschneidstempeln. Werkstattstechnik 104:660–665

    Google Scholar 

  26. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24:1642–1693. doi:10.1016/j.ijplas.2008.03.009

    Article  MATH  Google Scholar 

  27. Lemaitre J, Chaboche J (1990) Mechanics of solid materials. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  28. Kunc R, Prebil I (2003) Low-cycle fatigue properties of steel 42CrMo4. Mater Sci Eng A 345:278–285. doi:10.1016/S0921-5093(02)00464-1

    Article  Google Scholar 

  29. Yang M, Akiyama Y, Sasaki T (2004) Evaluation of change in material properties due to plastic deformation. J Mater Process Technol 151:232–236. doi:10.1016/j.jmatprotec.2004.04.114

    Article  Google Scholar 

  30. Sun G-Q, Shang D-G (2010) Prediction of fatigue lifetime under multiaxial cyclic loading using finite element analysis. Mater Des 31:126–133. doi:10.1016/j.matdes.2009.06.046

    Article  Google Scholar 

  31. Nalla R, Altenberger I, Noster U et al (2003) On the influence of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4 V at ambient and elevated temperatures. Mater Sci Eng A 355:216–230. doi:10.1016/S0921-5093(03)00069-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sistemska tehnika d.o.o., Slovenia, for their support throughout this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasenko Perenda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perenda, J., Trajkovski, J., Žerovnik, A. et al. Modeling and experimental validation of the surface residual stresses induced by deep rolling and presetting of a torsion bar. Int J Mater Form 9, 435–448 (2016). https://doi.org/10.1007/s12289-015-1230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-015-1230-2

Keywords

Navigation