Skip to main content
Log in

Electric hot incremental sheet forming of Ti-6Al-4V titanium, AA6061 aluminum, and DC01 steel sheets

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Single point incremental forming (SPIF) is an emerging forming process for rapid prototyping and manufacturing of complex components from sheet metals. Recently, the use of electric current for the local resistance heating of the deformation area has attracted much attention in SPIF. In order to further study the electric hot incremental sheet forming (EHISF), in the present research, the effect of utilizing various lubricants on the formability of Ti-6Al-4V, AA6061, and DC01 sheet metals is experimentally investigated by forming a truncated cone under different feed rates, vertical pitches, and electric currents. To this end, the Taguchi design of experiment (DOE) and the analysis of variance (ANOVA) are employed. The results showed that the formability of Ti-6Al-4V and AA6061 sheets can be improved using the EHISF. For both the sheets, the lubricant and the electric current have significant effects on the maximum achievable forming depth. In addition, the formability of the DC01 sheet is highly affected by the lubricant and the feed rate. The results of the DC01 sheet showed that at the considered wall angle, the maximum forming depth in the EHISF does not change, compared to the cold SPIF, but the thickness distribution of the formed part at a higher temperature is more uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shamsari M, Mirnia MJ, Elyasi M, Baseri H (2018) Formability improvement in single point incremental forming of truncated cone using a two-stage hybrid deformation strategy. Int J Adv Manuf Technol 94(5):2357–2368. https://doi.org/10.1007/s00170-017-1031-5

    Article  Google Scholar 

  2. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann 56(1):273–276. https://doi.org/10.1016/j.cirp.2007.05.063

    Article  Google Scholar 

  3. Fan G, Gao L, Hussain G, Wu Z (2008) Electric hot incremental forming: a novel technique. Int J Mach Tools Manuf 48(15):1688–1692. https://doi.org/10.1016/j.ijmachtools.2008.07.010

    Article  Google Scholar 

  4. Xu D, Lu B, Cao T, Chen J, Long H, Cao J (2014) A comparative study on process potentials for frictional stir- and electric hot-assisted incremental sheet forming. Procedia Engineering 81:2324–2329. https://doi.org/10.1016/j.proeng.2014.10.328

    Article  Google Scholar 

  5. Al-Obaidi A, Kräusel V, Landgrebe D (2016) Hot single-point incremental forming assisted by induction heating. Int J Adv Manuf Technol 82(5):1163–1171. https://doi.org/10.1007/s00170-015-7439-x

    Article  Google Scholar 

  6. Ambrogio G, Filice L, Manco GL (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann 57(1):257–260. https://doi.org/10.1016/j.cirp.2008.03.066

    Article  Google Scholar 

  7. Palumbo G, Brandizzi M (2012) Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Mater Des 40:43–51. https://doi.org/10.1016/j.matdes.2012.03.031

    Article  Google Scholar 

  8. Mirnia MJ, Dariani BM (2012) Analysis of incremental sheet metal forming using the upper-bound approach. Proc Inst Mech Eng B J Eng Manuf 226(8):1309–1320. https://doi.org/10.1177/0954405412445113

    Article  Google Scholar 

  9. Min J, Seim P, Störkle D, Thyssen L, Kuhlenkötter B (2017) Thermal modeling in electricity assisted incremental sheet forming. Int J Mater Form 10(5):729–739. https://doi.org/10.1007/s12289-016-1315-6

    Article  Google Scholar 

  10. Fan G, Sun F, Meng X, Gao L, Tong G (2010) Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol 49(9):941–947. https://doi.org/10.1007/s00170-009-2472-2

    Article  Google Scholar 

  11. Ambrogio G, Filice L, Gagliardi F (2012) Formability of lightweight alloys by hot incremental sheet forming. Mater Des 34:501–508. https://doi.org/10.1016/j.matdes.2011.08.024

    Article  Google Scholar 

  12. Shi X, Gao L, Khalatbari H, Xu Y, Wang H, Jin L (2013) Electric hot incremental forming of low carbon steel sheet: accuracy improvement. Int J Adv Manuf Technol 68(1):241–247. https://doi.org/10.1007/s00170-013-4724-4

    Article  Google Scholar 

  13. Xu DK, Lu B, Cao TT, Zhang H, Chen J, Long H, Cao J (2016) Enhancement of process capabilities in electrically-assisted double sided incremental forming. Mater Des 92:268–280. https://doi.org/10.1016/j.matdes.2015.12.009

    Article  Google Scholar 

  14. Honarpisheh M, Abdolhoseini MJ, Amini S (2016) Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. Int J Adv Manuf Technol 83(9):2027–2037. https://doi.org/10.1007/s00170-015-7717-7

    Article  Google Scholar 

  15. Najafabady SA, Ghaei A (2016) An experimental study on dimensional accuracy, surface quality, and hardness of Ti-6Al-4 V titanium alloy sheet in hot incremental forming. Int J Adv Manuf Technol 87(9):3579–3588. https://doi.org/10.1007/s00170-016-8712-3

    Article  Google Scholar 

  16. Liu R, Lu B, Xu D, Chen J, Chen F, Ou H, Long H (2016) Development of novel tools for electricity-assisted incremental sheet forming of titanium alloy. Int J Adv Manuf Technol 85(5):1137–1144. https://doi.org/10.1007/s00170-015-8011-4

    Article  Google Scholar 

  17. Magnus CS (2017) Joule heating of the forming zone in incremental sheet metal forming: part 1. Int J Adv Manuf Technol 91(1):1309–1319. https://doi.org/10.1007/s00170-016-9786-7

    Article  Google Scholar 

  18. Pacheco PAP, Silveira ME (2018) Numerical simulation of electric hot incremental sheet forming of 1050 aluminum with and without preheating. Int J Adv Manuf Technol 94(9):3097–3108. https://doi.org/10.1007/s00170-017-0879-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Mirnia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahdani, M., Mirnia, M.J., Bakhshi-Jooybari, M. et al. Electric hot incremental sheet forming of Ti-6Al-4V titanium, AA6061 aluminum, and DC01 steel sheets. Int J Adv Manuf Technol 103, 1199–1209 (2019). https://doi.org/10.1007/s00170-019-03624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03624-2

Keywords

Navigation