Skip to main content
Log in

Performance evaluation of high-speed incremental sheet forming technology for AA5754 H22 aluminum and DC04 steel sheets

  • Original Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Incremental sheet forming (ISF) has received tremendous attraction in industrial, academia and research segments due to its inherent advantages. To deploy ISF technology in the manufacturing sector, various aspects have to be addressed such as geometrical accuracy, non-homogenous thickness distribution, and process slowness. In this study, extensive experimental work was performed to satisfy the industrial requirements. The influence of forming parameters (step depth, forming wall angle and feed rate) was investigated to access the ISF feasibility at higher speeds when forming the AA5754-H22 aluminum alloy and DC04 steel. The surface roughness, thickness distribution, and microhardness tests were carried out for the samples, which were successfully formed at the higher levels of process parameters. These experimental results were obtained at different locations on the sheet after forming. The analysis has revealed that the possible reduction in the execution time is up to 84% faster for AA5754 H22 aluminum alloy and 74% in case of DC04 steel. In this way, the current study not only provides the necessary framework for the future development of ISF but also commercialization of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Cerro, E. Maidagan, J. Arana, A. Rivero, P.P. Rodríguez, Theoretical and experimental analysis of the dieless incremental sheet forming process, J. Mater. Process. Technol. 177 (1–3) (2006) 404–408.

    Article  Google Scholar 

  2. G. Ambrogio, L. Filice, F.A. Micari, force measuring based strategy for failure prevention in incremental forming, J. Mater. Process. Technol. 177 (1–3) (2006) 413–416.

    Article  Google Scholar 

  3. C. Raju, C.S. Narayanan, FLD and Fractography Analysis of Multiple Sheet Single Point Incremental Forming, Transection of Indian Institute of Metals, 2015, https://doi.org/10.1007/s12666-015-0679-5.

  4. M. Durante, A. Formisano, A. Langella, F.M.C. Minutolo, The influence of tool rotation on an incremental forming process, J. Mater. Process. Technol. 209 (9) (2009) 4621–4626.

    Article  Google Scholar 

  5. G. Ambrogio, L. Filice, F. Gagliardi, F. Micari, Sheet thinning prediction in single point incremental forming, Adv. Mater. Res. 6–8 (2005) 479–486.

  6. N.G. Azevedo, J.S. Farias R.P. Bastos, P. Teixeira, J.P. Davim, R. J. Alves de Sousa, Lubrication aspects during Single Point Incremental Forming for steel and aluminum materials, Int. J. Prec. Eng. Manuf. 16 (3) (2015) 589–595.

    Article  Google Scholar 

  7. A. Bhattacharya, K. Maneesh, N.V. Reddy, J. Cao, Formability and surface finish studies in single point incremental forming, J. Manuf. Sci. Eng. 133 (6) (2011).

  8. M.J. Mirnia, B.M. Dariani, H. Vanhove, J.R. Duflou, Thickness improvement in single point incremental forming deduced by sequential limit analysis, Int. J. Adv. Manuf. Technol. 70 (9– 12) (2014) 2029–2041.

  9. V. Gulati, A. Aryal, P. Katyal, A. Goswami, Process parameters optimization in single point incremental forming, J. Inst. Eng. (India) Ser. C 97 (2) (2015) 221–229.

    Google Scholar 

  10. S. Echrif, M. Hrairi, Significant parameters for the surface roughness in incremental forming process, Mater. Manuf. Process. 29 (2014) 697–703.

    Article  Google Scholar 

  11. G. Ambrogio, F. Gagliardi, S. Bruschi, L. Filice, On the highspeed single point incremental forming of titanium alloys, CIRP Ann. Manuf. Technol. 62 (1) (2013) 243–246.

    Article  Google Scholar 

  12. Y. Li, Z. Liu W.J.T. Daniel, P.A. Meehan, Simulation and experimental observations of effect of different contact interfaces on the incremental sheet forming process materials and manufacturing processes 29 (2014) 121–128.

    Google Scholar 

  13. V.A.M. Cristino, M.B. Silva, P.A.F. Martins, Hole-flanging of metals and polymers produced by single point incremental forming, Int. J. Mater. Prod. Technol. 50 (1) (2015) 37–48.

    Article  Google Scholar 

  14. G. Fan, L. Gao, Numerical simulation and experimental investigation to improve the dimensional accuracy in electric hot incremental forming of Ti–6Al–4V titanium sheet, Int. J. Adv. Manuf. Technol. 72 (5–8) (2014) 1133–1141.

  15. S. Golabi, H. Khazaali, Determining frustum depth of 304 stainless steel plates with various diameters and thicknesses by incremental forming, J. Mech. Sci. Technol. 28 (8) (2014) 3273–3278.

    Article  Google Scholar 

  16. K.A. Ghamdi, G. Hussain, S.I. Butt, Force variations with defects and a force-based strategy to control defects in SPIF, Mater. Manuf. Process. 29 (2014) 1197–1204.

    Article  Google Scholar 

  17. M. Azaouzi, N. Lebaal, Tool path optimization for single point incremental sheet forming using response surface method, Simul. Model. Pract. Theory 24 (2012) 49–58.

    Article  Google Scholar 

  18. G. Hussain, H.R. Khan, L. Gao, N. Hayat, Guidelines for tool-size selection for single-point incremental forming of an aerospace alloy, Mater. Manuf. Process. 28 (3) (2013) 324– 329.

  19. J. Li, C. Li, T. Zhou, Thickness distribution and mechanical property of sheet metal incremental forming based on numerical simulation, Trans. Nonferrous Met. Soc. China 22 (2012) s54–s60.

  20. H. Khalatbari, A. Iqbal, X. Shi, L. Gao, G. Hussain, M. Hashemipour, High-speed incremental forming process: a trade-off between formability and time efficiency, Mater. Manuf. Process. 30 (2015) 1354–1363.

    Article  Google Scholar 

  21. M. Ham, J. Jeswiet, Single point incremental forming limits using a boxbehnken design of experiment, Key Eng. Mater. 344 (2007) 629–636.

    Article  Google Scholar 

  22. J.J. Park, Y.H. Kim, Fundamental studies on the incremental sheet metal forming technique, J. Mater. Process. Technol. 140 (1–3) (2003) 447–453.

  23. Z. Liu, Y. Li, P.A. Meehan, Experimental investigation of mechanical properties, formability and force measurement for AA7075-O aluminum alloy sheets formed by incremental forming, Int. J. Prec. Eng. Manuf. 14 (11) (2013) 1891–1899.

    Article  Google Scholar 

  24. A. Kocanda, C. Jasinski, Extended evaluation of Erichsen cupping test results by means of laser speckle, Arch. Civ. Mech. Eng. 14 (2015) 211–216.

    Google Scholar 

  25. V.A. Cristino, L. Montanari, M.B. Silva, A.G. Atkins, P.A.F. Martins, Fracture in hole-flanging produced by single point incremental forming, Int. J. Mech. Sci. 83 (2014) 146–154.

    Article  Google Scholar 

  26. A. Mulay, S. Ben, S. Ismail, A. Kocanda, Experimental investigations into the effects of SPIF forming conditions on surface roughness and formability by design of experiments, J. Braz. Soc. Mech. Sci. Eng. (2017), https://doi.org/10.1007/s40430-016-0703-7.

  27. G. Centeno, I. Bagudanch, A.J. Martínez-Donaire, M.L. García-Romeu, C. Vallellano, Critical analysis of necking and fracture limit strains and forming forces in single-point incremental forming, Mater. Des. 63 (2014) 20–29.

    Article  Google Scholar 

  28. G. Hussain, L. Gao, Z.Y. Zhang, Formability evaluation of a pure titanium sheet in the cold incremental forming process, Int. J. Adv. Manuf. Technol. 37 (9–10) (2008) 920–926.

  29. K. Dai, Z.R. Wang, Y. Fang, CNC incremental sheet forming of an axially symmetric specimen and the locus of optimization, J. Mater. Process. Technol. 102 (1) (2000) 164–167.

    Article  Google Scholar 

  30. S. Kurra, S.D. Bagade, S.P. Regalla, Deformation behavior of extra deep drawing steel in single-point incremental forming, Mater. Manuf. Process. 30 (10) (2015) 1202–1209.

    Article  Google Scholar 

  31. M. Otsu, M. Yasunaga, M. Matsuda, K. Takashima, Friction stir incremental forming of A2017 aluminum sheets, Proc. Eng. 81 (2014) 2318–2323.

    Article  Google Scholar 

  32. Z. Liu, S. Liu, Y. Li, P. Meehan, Modelling and optimization of surface roughness in incremental sheet forming using a multi-objective function, Mater. Manuf. Process. 29 (2014) 808–818.

    Article  Google Scholar 

  33. J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood, Asymmetric single point incremental forming of sheet metal, CIRP Ann. Manuf. Technol. 54 (2) (2005) 623–649.

    Article  Google Scholar 

  34. S.P. Shanmuganatan, V.S.S. Kumar, Modeling of incremental forming process parameters of Al 3003 (O) by response surface methodology, Proc. Eng. 97 (2014) 346–356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Satish Ben.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulay, A., Ben, B.S., Ismail, S. et al. Performance evaluation of high-speed incremental sheet forming technology for AA5754 H22 aluminum and DC04 steel sheets. Archiv.Civ.Mech.Eng 18, 1275–1287 (2018). https://doi.org/10.1016/j.acme.2018.03.004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2018.03.004

Keywords

Navigation