Skip to main content
Log in

Large-scale data analysis of PECVD amorphous silicon interface passivation layer via the optical emission spectra for parameterized PCA

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, the process of hydrogenated amorphous silicon (a-Si:H) thin films is prepared by plasma enhanced chemical vapor deposition (PECVD) in conjunction with the in situ plasma diagnostic tool of optical emission spectrometer (OES). The passivation quality of a-Si:H thin films was measured, and the results show that the quality of the passivation layer was strongly influenced by chamber background environment via two different predeposition times. The minority lifetime can be greatly increased from approximately 300 to 777 μs for the predeposition time of 60 and 150 min, respectively, primarily attributed to the stabilization of the chamber environment and gas discharge during the predeposition process. Transmission electron microscopy photograph showed a compact a-Si:H layer (of approximately 10 nm) interface passivation layer with a void-free and crystallite-free interface after a predeposition time of 150 min. In addition, correlations between the plasma characteristics (OES spectra) and passivation quality (minority lifetime) of deposited a-Si:H thin films are explored by applying the techniques of principal component analysis (PCA). The PECVD process health condition was established as high lifetime at predeposition time of 150 min with the mean health value of 0.58 and the control limits of 0.28. The health value generated can be interpreted and reflected the PECVD process which will provide valuable information for passivation quality of higher lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olibet S, Vallat-Sauvain E, Ballif C (2007) Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds. Phys Rev B 76:035326

    Article  Google Scholar 

  2. Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ (2013) Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun 4:2761

    Article  Google Scholar 

  3. Seo J, Park S, Chan Kim Y, Jeon NJ, Noh JH, Yoon SC, Seok SI (2014) Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ Sci 7:2642–2646

    Article  Google Scholar 

  4. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozzaa A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344

    Article  Google Scholar 

  5. Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E (2014) 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J Photovoltaics 4:96–99

    Article  Google Scholar 

  6. Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N (2014) Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovoltaics 4:1433–1435

    Article  Google Scholar 

  7. Descoeudres A, Holman ZC, Barraud L, Morel S, De Wolf S, Ballif C (2013) >21% efficient silicon heterojunction solar cells on n- and p-type wafers compared. IEEE J Photovoltaics 3:83–89

    Article  Google Scholar 

  8. De Wolf S, Kondo M (2007) Abruptness of a-Si:H / c-Si interface revealed by carrier lifetime measurements. Appl Phys Lett 90:042111–1–042111–3

    Google Scholar 

  9. Koida T, Fujiwara H, Kondo M (2008) Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high-mobility hydrogen-doped In2O3 transparent conductive oxide. Appl Phys Exp 1:04501–1–04501-3

    Article  Google Scholar 

  10. Strahm B, Howling AA, Sansonnens L, Hollenstein C (2007) Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH4/H2 discharges. Plasma Sources Sci Technol 16:80–89

    Article  Google Scholar 

  11. Rech B, Roschek T, Müller J, Wieder S, Wagner H (2001) Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56 MHz) plasma excitation frequencies. Sol Energ Mater Sol Cells 66:267–273

    Article  Google Scholar 

  12. Moutinho HR, Jiang CS, Perkins J, Xu Y, Nelson BP, Jones KM, Romero MJ, Jassim MMA (2003) Effects of dilution ratio and seed layer on the crystallinity of microcrystalline silicon thin films deposited by hot-wire chemical vapor deposition. Thin Solid Films 430:135–140

    Article  Google Scholar 

  13. Birkholz M, Selle B, Conrad E, Lips K, Fuhs W (2000) Evolution of structure in thin microcrystalline silicon films grown by electron-cyclotron resonance chemical vapor deposition. J Appl Phys 88:4376–4379

    Article  Google Scholar 

  14. MK VV, Chm VDW, Schropp R (2004) Tandem solar cells deposited using hot- wire chemical vapor deposition. J Non-Cryst Solids 338:655–658

    Google Scholar 

  15. Finger F, Hapke P, Luysberg M, Carius R, Wanger H (1994) Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge. Appl Phys Lett 65:2588–2590

    Article  Google Scholar 

  16. Graf U, Meier J, Kroll U, Bailat J, Droz C, Sauvain EV, Shah A (2003) High rate growth of microcrystalline silicon by VHF-GD at high pressure. Thin Solid Films 427:37–40

    Article  Google Scholar 

  17. Peng S, Wang D, Yang F, Wang Z, Ma F (2015) Grown low-temperature microcrystalline silicon thin film by VHF PECVD for thin films solar cell. J Nanomater 5:327596

    Google Scholar 

  18. Shah AV, Meier J, Vallat-Sauvain E, Wyrsch N, Droz C, Graf U (2003) Material and solar cell research in microcrystalline silicon. Sol Energy Mater Sol Cells 78:469–491

    Article  Google Scholar 

  19. Lee SE, Park YC (2014) Highly-conductive B-doped nc-Si:H thin films deposited at room temperature by using SLAN ECR-PECVD. J Korean Phys Soc 65:651–656

    Article  Google Scholar 

  20. De Wolf S, Kondo M (2007) Abruptness of a-Si:H/c-Si interface revealed by carrier lifetime measurements. Appl Phys Lett 90:042111

    Article  Google Scholar 

  21. Hsieh Y-L, Kau L-H, Huang H-J, Lee C-C, Fuh Y-K, Li TT (2018) In-situ plasma monitoring of PECVD a-Si:H(i)/a-Si:H (n) surface passivation for heterojunction solar cells application. IEEE Xplore. https://doi.org/10.1109/CSTIC.8369253

  22. Hsieh Y-L, Tseng C-L, Lee C-C, Fuh Y-K, Chang J-Y, Lee J-Y, Li TT (2018) Improved process stability on an extremely thin amorphous / crystalline silicon interface passivation layer by using predeposition on the chamber wall. ECS J Solid State Sci Technol 7:355–361

    Article  Google Scholar 

  23. Tochikubo F, Suzuki A, Kakuta S, Terazono Y, Makabe T (1990) Study of the structure in rf glow discharges in SiH4/H2 by spatiotemporal optical emission spectroscopy: influence of negative ions. J Appl Phys 68:5532–5539

    Article  Google Scholar 

  24. Dingemans G, van den Donker MN, Gordijn A, Kessels WMM, van de Sanden MCM (2007) Probing the phase composition of silicon films in situ by etch product detection. Appl Phys Lett 91:161902

    Article  Google Scholar 

  25. Lien SY, Chang YC, Cho YS, Chang YY, Lee SJ (2012) Deposition and characterization of high-efficiency silicon thin-film solar cells by HF-PECVD and OES technology. IEEE Trans Electron Devices 59:1245–1254

    Article  Google Scholar 

  26. Fu HG, Hua GX, Dan ZX, Jian S, Jun ZJ, Ying Z (2011) Evolution of infrared spectra and optical emission spectra in hydrogenated silicon thin films prepared by VHF-PECVD. Chin Phys B 20:077802

    Article  Google Scholar 

  27. Matsuda A, Tanaka K (1982) Plasma spectroscopy—glow discharge deposition of hydrogenated amorphous silicon. Thin Solid Films 92:171–187

    Article  Google Scholar 

  28. Takagi T, Hayashi R, Payne A, Futako W, Nisimoto T, Takai M, Kondo M, Matsuda A (1999) “High-rate growth of stable a-Si:H” Mater. Res Soc Symp 557:105

    Article  Google Scholar 

  29. Veprek S, Marecek V (1968) The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport. Solid State Electro 11:683–684

    Article  Google Scholar 

  30. Torres P, Meier J, Fluckiger R, Kroll U, Anna Selvan JA, Keppner H, Shah A (1996) Device grade microcrystalline silicon owing to reduced oxygen contamination. Appl Phys Lett 69:1373–1375

    Article  Google Scholar 

  31. Siegel D, Lee J (2011) An auto-associative residual processing and K-means clustering approach for anemometer health assessment. Int. J. Prognostics Health Manage 2:1–12

    Google Scholar 

  32. Jia X, Jin C, Buzza M, Wang W, Lee J (2016) Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves. Renew Energy 99:1191–1201

    Article  Google Scholar 

  33. Joe Qin S (2003) Statistical process monitoring: basics and beyond. J Chemometrics 17:480–502

    Article  Google Scholar 

  34. Lapira E, Brisset D, Ardakani HD, Siegel D, Lee J (2012) Wind turbine performance assessment using multi-regime modeling approach. Renew Energy 45:86–95

    Article  Google Scholar 

  35. Lee J (1995) Machine performance monitoring and proactive maintenance in computer-integrated manufacturing: review and perspective. Int J Comput Integr Manuf 8:370–380

    Article  Google Scholar 

  36. Lee J (2016) Measurement of machine performance degradation using a neural network model. Int J Model Simulat 38:192–199

    Google Scholar 

  37. Nagel H, Berge C, Aberle AG (1999) Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors. J Appl Phys 86:6218–6221

    Article  Google Scholar 

  38. Ge J, Ling ZP, Wong J, Mueller T, Aberle AG (2012) Optimisation of intrinsic a-Si:H passivation layers in crystalline-amorphous silicon heterojunction solar cells. Energy Procedia 15:107–117

    Article  Google Scholar 

  39. Ge J, Ling PZ, Wong J et al (2013) Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy. J Appl Phys 133:234310

    Article  Google Scholar 

  40. Hsieh YL, Kau LH, Huang HJ, Lee CC, Li YKTT (2018) In situ plasma monitoring of PECVD nc-Si:H films and the influence of dilution ratio on structural evolution. Coatings 8:238

    Article  Google Scholar 

  41. Jolliffe IT (2002) Principal component analysis. Springer-Verlag, New York

    MATH  Google Scholar 

  42. Ouwens JD, Schropp REI (1996) Hydrogen micro structure in hydrogenated amorphous silicon. Phys Rev B 54:17759–17762

    Article  Google Scholar 

  43. Guha S, Yang J, Jones SJ, Chen Y, Williamson DL (1992) Effect of micro voids on initial and light degraded efficiencies of hydrogenated amorphous silicon alloy solar cells. Appl Phys Lett 61:1444–1446

    Article  Google Scholar 

  44. Matsuda A, Takai M, Nishimoto T, Kondo M (2003) Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate. Sol Energy Mater Sol Cells 78:3–26

    Article  Google Scholar 

  45. Nishimoto T, Takai M, Miyahara H, Kondo M (2002) A. Matsuda “Amorphous silicon solar cells deposited at high growth rate”. J Non-Cryst Solids 1116:299–302

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Delta electronics, Inc. Taiwan and Department of Mechanical Engineering, Optical Science Center, and Department of Optics and Photonics, National Central University, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiin-Kuen Fuh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HJ., Kau, LH., Wang, HS. et al. Large-scale data analysis of PECVD amorphous silicon interface passivation layer via the optical emission spectra for parameterized PCA. Int J Adv Manuf Technol 101, 329–337 (2019). https://doi.org/10.1007/s00170-018-2938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2938-1

Keywords

Navigation