Skip to main content
Log in

Research on evaluating laser welding quality based on two-dimensional array ultrasonic probe

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, an evaluating method of laser welding quality for stainless steel lap joint has been studied based on the ultrasonic nondestructive testing technology. The two-dimensional array ultrasonic probe is used to inspect the weld joint, analyzing the effect of fusion state on A-scan echo amplitude, and C-scan image of internal contact surface is established. A concept of equivalent weld width as the quantitative characterization of fusion state is defined, and a computational model of equivalent weld width is discussed based on statistical method. Testing results show that this method is simple and feasible, and its accuracy could completely meet the requirements of engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shao J, Yan Y (2005) Review of techniques for on-line monitoring and inspection of laser welding. J Phys Conf Ser 15:101–107. doi:10.1088/1742-6596/15/1/017

    Article  Google Scholar 

  2. Ai YW, Shao XY, Jiang P, Li PG, Liu Y, Yue C (2015) Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials. Appl Phys A Mater 121(2):555–569. doi:10.1007/s00339-015-9408-5

    Article  Google Scholar 

  3. Jeng JY, Mau TF, Leu SM (2000) Gap inspection and alignment using a vision technique for laser butt joint welding. Int J Adv Manuf Technol 16(3):212–216. doi:10.1007/s001700050029

    Article  Google Scholar 

  4. Ao SS, Zhen L, Feng MN, Yan FY (2015) Simulation and experimental analysis of acoustic signal characteristics in laser welding. Int J Adv Manuf Technol 81(1):277–287. doi:10.1007/s00170-015-7164-5

    Article  Google Scholar 

  5. Chen ZQ, Gao XD (2014) Detection of weld pool width using infrared imaging during high-power fiber laser welding of type 304 austenitic stainless steel. Int J Adv Manuf Technol 74(9):1247–1254. doi:10.1007/s00170-014-6081-3

    Article  MathSciNet  Google Scholar 

  6. Mei LF, Chen GY, Jin XZ, Zhang Y, Wu Q (2009) Research on laser welding of high-strength galvanized automobile steel sheets. Opt Lasers Eng 47(11):1117–1124. doi:10.1016/j.optlaseng.2009.06.016

    Article  Google Scholar 

  7. Sathiya P, Panneerselvam K, Soundararajan R (2012) Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel. Opt Laser Technol 44(6):1905–1914. doi:10.1016/j.optlastec.2012.01.025

    Article  Google Scholar 

  8. Kim TW, Park YW (2014) Influence of welding parameters on weld bead in laser arc hybrid welding process using coaxial monitoring system and image processing. Mater Res Innov 18(S2):898–901. doi:10.1179/1432891714Z.000000000523

    Google Scholar 

  9. Zhang Y, Zhang CL, Tan LP, Li SC (2013) Coaxial monitoring of the fibre laser lap welding of Zn-coated steel sheets using an auxiliary illuminant. Opt Laser Technol 50:167–175. doi:10.1016/j.optlastec.2013.03.001

    Article  Google Scholar 

  10. Huang W, Kovacevic R (2012) Development of a real-time laser-based machine vision system to monitor and control welding processes. Int J Adv Manuf Technol 63(1):235–248. doi:10.1007/s00170-012-3902-0

    Article  Google Scholar 

  11. Diot G, Koudri-David A, Walaszek H, Guegan S, Flifla J (2013) Non-destructive testing of porosity in laser welded aluminium alloy plates: laser ultrasound and frequency-bandwidth analysis. J Nondestruct Eval 32(4):354–361. doi:10.1007/s10921-013-0189-5

    Article  Google Scholar 

  12. Liu J, Xu GC, Gu XP, Zhou GH (2015) Ultrasonic test of resistance spot welds based on wavelet package analysis. Ultrasonics 56:557–565. doi:10.1016/j.ultras.2014.10.013

    Article  Google Scholar 

  13. Chen ZH, Shi YW, Jiao BQ, Zhao HY (2009) Ultrasonic nondestructive evaluation of spot welds for zinc-coated high strength steel sheet based on wavelet packet analysis. J Mater Process Technol 209(5):2329–2337. doi:10.1016/j.jmatprotec.2008.05.030

    Article  Google Scholar 

  14. Maev RG, Ptchelintsev A, Denissov AA (2002) Ultrasonic imaging with 2D matrix transducers. Acoustical Imaging 25:157–162. doi:10.1007/0-306-47107-8_21

    Article  Google Scholar 

  15. Fan HH, Yanagida H, Tamura Y, Guo SQ, Saitoh T, Takahashi T (2010) Image quality improvement of ultrasonic computed tomography on the basis of maximum likelihood expectation maximization algorithm considering anisotropic acoustic property and time-of-flight interpolation. Jpn J Appl Phys 49(7S), 07HC12. doi:10.1143/JJAP.49.07HC12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Xu, G., Gu, X. et al. Research on evaluating laser welding quality based on two-dimensional array ultrasonic probe. Int J Adv Manuf Technol 84, 1717–1723 (2016). https://doi.org/10.1007/s00170-015-8243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8243-3

Keywords

Navigation