Skip to main content

Advertisement

Log in

Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 17 September 2015

Abstract

The welded joints of dissimilar materials have been widely used in automotive, ship and space industries. The joint quality is often evaluated by weld seam geometry, microstructures and mechanical properties. To obtain the desired weld seam geometry and improve the quality of welded joints, this paper proposes a process modeling and parameter optimization method to obtain the weld seam with minimum width and desired depth of penetration for laser butt welding of dissimilar materials. During the process, Taguchi experiments are conducted on the laser welding of the low carbon steel (Q235) and stainless steel (SUS301L-HT). The experimental results are used to develop the radial basis function neural network model, and the process parameters are optimized by genetic algorithm. The proposed method is validated by a confirmation experiment. Simultaneously, the microstructures and mechanical properties of the weld seam generated from optimal process parameters are further studied by optical microscopy and tensile strength test. Compared with the unoptimized weld seam, the welding defects are eliminated in the optimized weld seam and the mechanical properties are improved. The results show that the proposed method is effective and reliable for improving the quality of welded joints in practical production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

LBW:

Laser butt welding

RBFNN:

Radial basis function neural network

GA:

Genetic algorithm

LP:

Laser power

WS:

Welding speed

FP:

Focal position

GAP:

Gap

SG:

Shielding gas

DOE:

Design of experiments

ANN:

Artificial neural networks

PSO:

Particle swarm optimization

BPNN:

Back-propagation neural network

WF:

Front width

HF:

Front height

WB:

Back width

HB:

Back height

BM:

Base materials

F:

Focal length

BPP:

The beam parameter product

WZ:

Weld zone

References

  1. V.V. Satyanarayana, G. Madhusudhan Reddy, T. Mohandas, Dissimilar metal friction welding of austenitic–ferritic stainless steels. J. Mater. Process. Technol. 160(2), 128–137 (2005)

    Article  Google Scholar 

  2. E.M. Anawa, A.G. Olabi, Using Taguchi method to optimize welding pool of dissimilar laser-welded components. Opt. Laser Technol. 40(2), 379–388 (2008)

    Article  ADS  Google Scholar 

  3. K.Y. Benyounis, A.G. Olabi, M.S.J. Hashmi, Multi-response optimization of CO2 laser-welding process of austenitic stainless steel. Opt. Laser Technol. 40(1), 76–87 (2008)

    Article  ADS  Google Scholar 

  4. A.M. Visco, N. Campo, L. Torrisi et al., Effect of carbon nanotube amount on polyethylene welding process induced by laser source. Appl. Phys. A 103(2), 439–445 (2011)

    Article  ADS  Google Scholar 

  5. J.E.R. Dhas, S. Kumanan, Optimization of parameters of submerged arc weld using non conventional techniques. Appl. Soft Comput. 11(8), 5198–5204 (2011)

    Article  Google Scholar 

  6. S. Fukuda, H. Morita, Y. Yamauchi et al., Expert system for determine welding condition for a pressure vessel. Iron Steel Inst. Jpn. Int. 30, 150–154 (1990)

    Article  Google Scholar 

  7. Y.S. Tarng, W.H. Yang, Optimisation of the weld bead geometry in gas tungsten arc welding by the Taguchi method. Int. J. Adv. Manuf. Technol. 14(8), 549–554 (1998)

    Article  Google Scholar 

  8. Y. Dongxia, L. Xiaoyan, H. Dingyong et al., Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach. Opt. Laser Technol. 44(7), 2020–2025 (2012)

    Article  ADS  Google Scholar 

  9. P. Dutta, D.K. Pratihar, Modeling of TIG welding process using conventional regression analysis and neural network-based approaches. J. Mater. Process. Technol. 184(1), 56–68 (2007)

    Article  Google Scholar 

  10. D. Katherasan, J.V. Elias, P. Sathiya et al., Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. J. Intell. Manuf. 25(1), 67–76 (2014)

    Article  Google Scholar 

  11. Y.W. Park, S. Rhee, Process modeling and parameter optimization using neural network and genetic algorithms for aluminum laser welding automation. Int. J. Adv. Manuf. Technol. 37(9–10), 1014–1021 (2008)

    Article  Google Scholar 

  12. P. Sathiya, K. Panneerselvam, M.Y. Abdul Jaleel, Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm[J]. Mater. Des. 36, 490–498 (2012)

    Article  Google Scholar 

  13. S.D. Meshram, T. Mohandas, G.M. Reddy, Friction welding of dissimilar pure metals. J. Mater. Process. Technol. 184(1), 330–337 (2007)

    Article  Google Scholar 

  14. R. Paventhan, P.R. Lakshminarayanan, V. Balasubramanian, Fatigue behaviour of friction welded medium carbon steel and austenitic stainless steel dissimilar joints. Mater. Des. 32(4), 1888–1894 (2011)

    Article  Google Scholar 

  15. A. Ruggiero, L. Tricarico, A.G. Olabi et al., Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316. Opt. Laser Technol. 43(1), 82–90 (2011)

    Article  ADS  Google Scholar 

  16. M. Koilraj, V. Sundareswaran, S. Vijayan et al., Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083–Optimization of process parameters using Taguchi technique[J]. Mater. Des. 42, 1–7 (2012)

    Article  Google Scholar 

  17. J. Moody, C.J. Darken, Neural computation (MIT Press, Cambridge, 1989)

    Google Scholar 

  18. J. Park, I.W. Sandberg, Approximation and radial-basis function networks. Neural Comput. 5, 305–316 (1993)

    Article  Google Scholar 

  19. Y.S. Hwang, S.Y. Bang, An efficient method to construct a radial basis function neural network classifier. Neural Netw. 10(8), 1495–1503 (1997)

    Article  Google Scholar 

  20. M.J. Er, S. Wu, J. Lu et al., Face recognition with radial basis function (RBF) neural networks. IEEE Trans. Neural Netw. 13(3), 697–710 (2002)

    Article  Google Scholar 

  21. J. Moody, C.J. Darken, Fast learning in network of locally-tuned processing units. Neural Comput. 1, 281–294 (1989)

    Article  Google Scholar 

  22. Y. Ni, C. Huang, S. Kokot, A kinetic spectrophotometric method for the determination of ternary mixtures of reducing sugars with the aid of artificial neural networks and multivariate calibration. Anal. Chim. Acta 480(1), 53–65 (2003)

    Article  Google Scholar 

  23. D.S. Nagesh, G.L. Datta, Genetic algorithm for optimization of welding variables for height to width ratio and application of ANN for prediction of bead geometry for TIG welding process. Appl. Soft Comput. 10(3), 897–907 (2010)

    Article  Google Scholar 

  24. S. Chokkalingham, N. Chandrasekhar, M. Vasudevan, Predicting the depth of penetration and weld bead width from the infrared thermal image of the weld pool using artificial neural network modeling. J. Intell. Manuf. 23(5), 1995–2001 (2012)

    Article  Google Scholar 

  25. K. Manikya Kanti, P. Srinivasa Rao, Prediction of bead geometry in pulsed GMA welding using back propagation neural network. J. Mater. Process. Technol. 200(1), 300–305 (2008)

    Article  Google Scholar 

  26. H. HollandJohn, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence (University of Michigan Press, Ann Arbor, 1975)

    Google Scholar 

  27. R. Siragusa, E. Perret, H.V. Nguyen et al., Control of the sensitivity of CRLH interdigital microstrip balanced structures using a co-design genetic algorithm approach. Appl. Phys. A 103(3), 709–714 (2011)

    Article  ADS  Google Scholar 

  28. S. Akpinar, G. Mirac Bayhan, A hybrid genetic algorithm for mixed model assembly line balancing problem with parallel workstations and zoning constraints. Eng. Appl. Artif. Intell. 24(3), 449–457 (2011)

    Article  Google Scholar 

  29. L. Gao, F. Lemarchand, M. Lequime, Reverse engineering from spectrophotometric measurements: performances and efficiency of different optimization algorithms. Appl. Phys. A 108(4), 877–889 (2012)

    Article  ADS  Google Scholar 

  30. O. Ozgun, M. Kuzuoglu, Approximation of transformation media-based reshaping action by genetic optimization. Appl. Phys. A 117(2), 597–604 (2014)

    Article  Google Scholar 

  31. M. Galvan-Sosa, J. Portilla, J. Hernandez-Rueda et al., Optimization of ultra-fast interactions using laser pulse temporal shaping controlled by a deterministic algorithm. Appl. Phys. A 114(2), 477–484 (2014)

    Article  ADS  Google Scholar 

  32. Y. Rong, Z. Zhang, G. Zhang et al., Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA. Opt. Lasers Eng. 67, 94–104 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51323009, the National Basic Research Program (973 Program) of China under Grant No. 2014CB046703, the National Natural Science Foundation of China (NSFC) under Grant No. 51121002, and the Fundamental Research Funds for the Central Universities, HUST: Grant No. 2014TS040. The authors also would like to thank the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Y., Shao, X., Jiang, P. et al. Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials. Appl. Phys. A 121, 555–569 (2015). https://doi.org/10.1007/s00339-015-9408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9408-5

Keywords

Navigation