Skip to main content

Advertisement

Log in

Uncertainty quantification and robust modeling of selective laser melting process using stochastic multi-objective approach

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) is a popular additive manufacturing process that creates 3D metal parts by fusing fine metal powders together. Modeling and optimization of SLM prototypes has been extensively studied deterministically in the literature considering different properties such as bead width, compressive strength, and tensile strength. However, due to existence of uncertainty sources in input parameters, material properties, and measurement instruments, it is very desirable to develop robust methods to deal with such uncertainties. In this paper, a multi-objective genetic programming algorithm integrating Monte Carlo simulations (MCSs) has been used for modeling and prediction of the bead width of prototypes in SLM process by taking into account probabilistic uncertainty in experimental data. The necessity of such probabilistic robust approach is shown by stochastic analysis and uncertainty quantification (UQ) of existing deterministic mathematical models in the literature. The objective functions that have been considered for multi-objective modeling process are the mean and standard deviation of the training errors, prediction errors, and the number of nodes which the latter is employed to use as a complexity index of the evolved GP-type models. The robustness of both deterministic and probabilistic models are compared and shown based on the cumulative distribution function (CDF) and probability density function (PDF) of statistical performance of objective functions. The results reveal that the suggested deterministic models in the literature are not trustworthy for practical usages due to large variations in objective functions while the model proposed by this study shows an acceptable robustness performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pupo Y, Monroy KP, Ciurana J (2015) Influence of process parameters on surface quality of CoCrMo produced by selective laser melting. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7040-3

    Google Scholar 

  2. Song C, Yang Y, Liu Y, Luo Z, Yu J (2015) Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting. Int J Adv Manuf Technol 78(5–8):885–893

    Article  Google Scholar 

  3. Sun S, Zheng L, Liu Y, Liu J, Zhang H (2015) Selective laser melting of Al-Fe-V-Si heat-resistant aluminum alloy powder: modeling and experiments. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7137-8

    Google Scholar 

  4. Song C, Yang Y, Wang Y, Wang D, Yu J (2014) Research on rapid manufacturing of CoCrMo alloy femoral component based on selective laser melting. Int J Adv Manuf Technol 75(1–4):445–453

    Article  Google Scholar 

  5. Cherry JA, Davies HM, Mehmood S, Lavery NP, Brown SG, Sienz J (2015) Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76(5–8):869–879

    Article  Google Scholar 

  6. Czelusniak T, Amorim FL, Higa CF, Lohrengel A (2014) Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering. Int J Adv Manuf Technol 72(9–12):1503–1512

    Article  Google Scholar 

  7. Wang D, Yang Y, Yi Z, Su X (2013) Research on the fabricating quality optimization of the overhanging surface in SLM process. Int J Adv Manuf Technol 65(9–12):1471–1484

    Article  Google Scholar 

  8. Paggi RA, Beal VE, Salmoria GV (2013) Process optimization for PA12/MWCNT nanocomposite manufacturing by selective laser sintering. Int J Adv Manuf Technol 66(9–12):1977–1985

    Article  Google Scholar 

  9. Verma A, Tyagi S, Yang K (2014) Modeling and optimization of direct metal laser sintering process. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6443-x

    Google Scholar 

  10. Jamali A, Nariman-zadeh N, Darvizeh A, Masoumi A, Hamrang S (2009) Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process. Eng Appl Artif Intell 22:676–687

    Article  Google Scholar 

  11. Nariman-zadeh N, Darvizeh A, Darvizeh M, Gharababaei H (2002) Modelling of explosive cutting process of plates using GMDH-type neural network and singular value decomposition. J Mater Process Technol 128:80–87

    Article  MATH  Google Scholar 

  12. Nariman-zadeh N, Darvizeh A, Jamali A, Moeini A (2005) Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. J Mater Process Technol 164–165:1561–1571

    Article  Google Scholar 

  13. Garg A, Tai K, Lee CH, Savalani MM (2013) A hybrid M5’-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process. J Intell Manuf. doi:10.1007/s10845-013-0734-1

    Google Scholar 

  14. Garg A, Rachmawati L, Tai K (2013) Classification-Driven model selection approach of genetic programming in modelling of turning process. Int J Adv Manuf Technol 69(5–8):1137–1151

    Article  Google Scholar 

  15. Garg A, Bhalerao Y, Tai K (2013) Review of empirical modelling techniques for modelling of turning process. Int J Model Identif Control 20(2):121–129

    Article  Google Scholar 

  16. Garg A, Tai K, Vijayaraghavan V, Singru PM (2014) Mathematical modelling of burr height of the drilling process using a statistical based multi-gene genetic programming approach. Int J Adv Manuf Technol 73:113–126. doi:10.1007/s00170-014-5817-4

    Article  Google Scholar 

  17. Garg A, Tai K, Savalani MM (2014) Formulation of bead width model of an SLM prototype using modified multi-gene genetic programming approach. Int J Adv Manuf Technol 73:375–388

    Article  Google Scholar 

  18. Chan KY, Kwong CK, Dillon TS, Tsim YC (2013) Reducing overfitting in manufacturing process modeling using a backward elimination based genetic programming. J Appl Soft Comput 11:1648–1656

    Article  Google Scholar 

  19. Jamali A, Khaleghi E, Gholaminezhad I, Nariman-zadeh N (2014) Modelling and prediction of complex non-linear processes by using Pareto multi-objective genetic programming. Int J Syst Sci. doi:10.1080/00207721.2014.945983

    MATH  Google Scholar 

  20. Jamali A, Salehpour M, Nariman-zadeh N (2013) Robust Pareto active suspension design for vehicle vibration model with probabilistic uncertain parameters. Multi-body Syst Dyn 30:265–285

    Article  Google Scholar 

  21. Eldred MS (2009) Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, May 4–7, American Institute of Aeronautics and Astronautics Inc.

  22. Bodla KK, Murthy JY, Garimella SV (2013) Optimization under uncertainty applied to heat sink design. ASME J. Heat Transfer Vol. 135

  23. Pettersson MP, Iaccarino G, Nordstrom J (2015) Polynomial chaos methods for hyperbolic partial differential equations. Springer Math Eng. doi:10.1007/978-3-319-10714-1_1

    MATH  Google Scholar 

  24. Kato H, Mashiko H, Tokuyama Y, Funazaki K, and Takida J (2011) Robust aerodynamic shape optimization of supersonic turbine using non-intrusive polynomial chaos expansion, 9th World Congress on Structural and Multidisciplinary Optimization, June 13–17, Shizuoka, Japan

  25. Senthamaraikkannan G, Prasad V, Gates I (2015) Stochastic proxy modelling for coalbed methane production using orthogonal polynomials, 9th International Symposium on Advanced Control of Chemical Processes, June 7–10, Whistler, British Columbia, Canada

  26. Mandur J, Budman H (2012) A polynomial-chaos based algorithm for robust optimization in the presence of bayesian uncertainty, 8th IFAC Symposium on Advanced Control of Chemical Processes, Furama Riverfront, Singapore, July 10–13

  27. Zhao Q, Chen X, Ma ZD, Lin Y (2015) Robust topology optimization based on stochastic collocation methods under loading uncertainties. Math Probl Eng. doi:10.1155/2015/580980

    MathSciNet  Google Scholar 

  28. Witteveen JAS, Iaccarino G (2012) Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces. SIAM J Sci Comput 34(2):814–835

    Article  MathSciNet  MATH  Google Scholar 

  29. Lazarov BS, Schevenels M, Sigmund O (2012) Topology optimization considering material and geometric uncertainties using stochastic collocation methods. Struct Multidiscip Optim 46(4):597–612

    Article  MathSciNet  MATH  Google Scholar 

  30. Li HS, Ma C (2013) Hybrid dimension-reduction method for robust design optimization. AIAA J 51(1):138–144. doi:10.2514/1.J051659

    Article  Google Scholar 

  31. Lee I, Choi KK, Du L, Gorsich D (2008) Dimension reduction method for reliability-based robust design optimization. Comput Struct 86(13–14):1550–1562

    Article  MATH  Google Scholar 

  32. Chenouri S, Liang J, Small CG (2015) Robust dimension reduction. WIREs Comput Stat 7:63–69. doi:10.1002/wics.1331

    Article  MathSciNet  Google Scholar 

  33. Zhang W (2007) Design for uncertainties of sheet metal forming process, PhD thesis, The Ohio State University

  34. Ebrahimiasl S, Yunus WZ, Kassim A, Zainal Z (2010) Prediction of grain size, thikness and absorbnace of nanocrystalline tin oxide thin film by Taguchi robust design. Solid State Sci 12(8):1323–1327

    Article  Google Scholar 

  35. Nejlaoui M, Houidi A, Affi Z, Romdhane L (2013) Multi-objective robust design optimization of rail vehicle moving in short radius curved tracks based on the safety and comfort criterta. Simul Model Pract Theory 30:21–34

    Article  MATH  Google Scholar 

  36. Jamali A, Ahmadi B, Ghamati M, Nariman-zadeh N (2013) Reliabiity-based optimal controller design for systems with probabilistic uncertain parameters using fuzzy limit state function. J Vib Control. doi:10.1177/1077546313496298,2013

    Google Scholar 

  37. Crespo LG, Kenny SP (2005) Robust control deign for systems with probabilistic uncertainty, NASA report, TP-2005-213531

  38. Smith BA, Kenny SP, Crespo LG (2005) Probabilistic parameter uncertainty analysis of single input single output control systems, NASA report TM-2005-213280

  39. Field RV, Voulgaris PG, Bergman LA (1996) Methods to compute probabilistic measures of robustness for structural systems. J Vib Control 2(4):447–463

    MathSciNet  MATH  Google Scholar 

  40. Khan RA, Datta TK (2010) Probabilistic risk assessment of fan type cable stayed bridges against earthquake forces. J Vib Control 16(6):779–799

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang C, Recknagel F, Guo J, Blanckaert K (2014) Adaptation and multiple parameter optimization of the simulation model SALMO as prerequisite for scenario analysis on a shallow eutrophic Lake. Ecol Model 273:109–116

    Article  Google Scholar 

  42. He J, Jones JW, Graham WD, Dukes MD (2010) Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agric Syst 103:256–264

    Article  Google Scholar 

  43. Diwekar UM, Kalagnaman JR (1997) Efficient sampling technique for optimization under uncertainty. Am Inst Chem Eng J 43(2):440–447

    Article  Google Scholar 

  44. Ray L, Stengel RF (1993) A Monte Carlo approach to the analysis of control system robustness. Automatica 29(1):229–236

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang Q, Stengel RF (2002) Robust control of nonlinear systems with parametric uncertainty. Automatica 38:1591–1599

    Article  MathSciNet  MATH  Google Scholar 

  46. Kalos MH, Whitlock PA (1986) Monte Carlo methods. Wiley, New York

    Book  MATH  Google Scholar 

  47. Bi S, Deng Z, Chen Z (2013) Stochastic validation of structural FE-models based on hierarchical cluster analysis and advanced Monte Carlo simulation. Finite Elem Anal Des 67:22–33

    Article  Google Scholar 

  48. Biwer A, Griffith S, Cooney C (2005) Uncertainty analysis of penicillin V production using Monte Carlo simulation. Biotechnol Bioeng 90(2):167–179

    Article  Google Scholar 

  49. Paris AS, Tanase I, Tarkolea C, Dragomirescu C (2012) Application of the Monte Carlo simulation in the manufacturing processes. Proc Manuf Syst 7(4):253–258

    Google Scholar 

  50. Bieda B (2011) Stochastic Assessment by Monte Carlo simulation for LCI applied to steel process chain: The ArcelorMittal Steel Poland SA in Krakow, Poland case study. Innovations in Sharing Environmental Observations and Information, 787–798

  51. Jamali A, Khaleghi E, Gholaminezhad I, Nariman-Zadeh N, Gholaminia B, Jamal-Omidi A (2014) Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data. J Intell Manuf. doi:10.1007/s10845-014-0967-7

    Google Scholar 

  52. Schumacher M, Meneses M, Xifro A, Domingo JL (2001) The use of Monte-Carlo simulation techniques for risk assessment: study of a municipal waste incinerator. Chemosphere 43(4):787–799

    Article  Google Scholar 

  53. Booker JM, Ross TJ (2011) An evolution of uncertainty assessment and quantification. Sci Iran 18(3):669–676

    Article  Google Scholar 

  54. Darbra RM, Eljarrat E, Barcelo D (2008) How to measure uncertainties in environmental risk assessment. Trends Anal Chem 27(4):377–385

    Article  Google Scholar 

  55. Guyonnet D, Bourgine B, Dobois D, Fargier H, Côme B, Chilés JP (2003) Hybrid approach for addressing uncertainty in risk assessments. Environ Eng 129(1):68–78

    Article  Google Scholar 

  56. Song KY, Seniuk GTG, Kozinski JA, Zhang WJ, Gupta MM (2015) An innovative Fuzzy-Neural decision analyzer for qualitative group decision making. Int J Inf Technol Decis Mak 14(3):659–696

    Article  Google Scholar 

  57. Zaversky F, Garćıa-Barberena J, Sánchez M, Astrain D (2012) Probabilistic modeling of a parabolic trough collector power plant – An uncertainty and sensitivity analysis. Sol Energy 86:2128–2139

    Article  Google Scholar 

  58. Kweon KE, Lee JH, Ko Y, Jeong M, Myoung J, Yun I (2007) Neural network based modeling of HfO2 thin film characteristicsusing Latin Hypercube Sampling. Exp Syst Appl 32:358–363

    Article  Google Scholar 

  59. Koza J (1992) Genetic programming, on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  60. Jamali A, Nariman-Zadeh N, Atashkari K (2008) Multi-objective uniform diversity genetic algorithm (MUGA). In witoldkosinski (Eds.), Advanced in evolutionary algorithms. Vienna: IN-TECH

  61. Jamali A, Hajiloo A, Nariman-zadeh N (2010) Reliability-based robust Pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA). Exp Syst Appl 37:401–413

    Article  Google Scholar 

  62. Jamali A, Ghamati M, Ahmadi B, Nariman-zadeh N (2013) Probability of failure for uncertain control systems using neural networks and multi-objective uniform-diversity genetic algorithms (MUGA). Eng Appl Artif Intell 26(2):714–723

    Article  Google Scholar 

  63. Mumtaz KA, Erasenthiran P, Hopkinson N (2008) High density selective laser melting of Waspaloy. J Mater Process Technol 195:77–87

    Article  Google Scholar 

  64. Garg A, Tai K, Savalani MM (2014) State-of-the-art in empirical modelling of rapid prototyping processes. Rapid Prototyp J. doi:10.1108/RPJ-08-2012-0072

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Gholaminezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholaminezhad, I., Assimi, H., Jamali, A. et al. Uncertainty quantification and robust modeling of selective laser melting process using stochastic multi-objective approach. Int J Adv Manuf Technol 86, 1425–1441 (2016). https://doi.org/10.1007/s00170-015-8238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8238-0

Keywords

Navigation