Skip to main content

Advertisement

Log in

Robust Pareto active suspension design for vehicle vibration model with probabilistic uncertain parameters

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Using the robust design of a vehicle vibration model considering uncertainties can elaborately show the effects of those unsure values on the performance of such a model.

In this paper, probabilistic metrics, instead of deterministic metrics, are used for a robust Pareto multi-objective optimum design of five-degree of freedom vehicle vibration model having parameters with probabilistic uncertainties. In order to achieve an optimum robust design against probabilistic uncertainties existing in reality, a multi-objective uniform-diversity genetic algorithm (MUGA) in conjunction with Monte Carlo simulation is used for Pareto optimum robust design of a vehicle vibration model with ten conflicting objective functions. The robustness of the design obtained using such a probabilistic approach is shown and compared with that of the design obtained using deterministic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Goodall, R.M., Kortüm, W.: Active control in ground transportation—a review of the state-of-the-art and future potential. Veh. Syst. Dyn. 12, 225–257 (1983)

    Article  Google Scholar 

  2. Hac, A., Youn, I.: Optimal semi-active suspension with preview based on a quarter car model. J. Vib. Acoust. 114, 84–92 (1992)

    Article  Google Scholar 

  3. Karnopp, D.: Analytical results for optimum actively damped suspensions under random excitation. J. Vib. Acoust. Stress Reliab. Des. 111(3), 278–283 (1989)

    Article  Google Scholar 

  4. Chalasani, R.M.: Ride performance potential of active suspension systems part 1: simplified analysis based on a quarter-car model. In: Symposium on Simulation and Control of Ground Vehicles and Transportation Systems AMD-80 (DSC.2), pp. 187–204 (1986)

    Google Scholar 

  5. Priyandoko, G., Mailah, M., Jamaluddin, H.: Vehicle active suspension system using skyhook adaptive neuro active force control. Mech. Syst. Signal Process. 23(3), 855–868 (2009)

    Article  Google Scholar 

  6. Hrovat, D.: Optimal active suspensions for 3D vehicle models. In: Proc. of the American Control Conference, Arizona, USA, vol. 2, pp. 1534–1541 (1991)

    Google Scholar 

  7. Wang, J., Wilson, D.A., Xu, W., Crolla, D.A.: Active suspension control to improve vehicle ride and steady-state handling. In: Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 12–15 December 2005

    Google Scholar 

  8. Yi, K., Hedrick, J.K.: The use of semi-active suspensions to reduce pavement damage. In: Henry, J.J., Wamblod, J.C. (eds.) Vehicle, Tire, Pavement Interface, ASTM STP 1164, pp. 1–13. American Society for Testing and Materials, Philadelphia (1992)

    Chapter  Google Scholar 

  9. Thompson, A.G.: The effect of tire damping on the performance of vibration absorbers in an active suspension. J. Sound Vib. 133(3), 457–465 (1989)

    Article  Google Scholar 

  10. Redfield, R.C.: Performance of low-bandwidth, semi-active damping concept for suspension control. Veh. Syst. Dyn. 20, 245–267 (1991)

    Article  Google Scholar 

  11. Feng, J.Z., Li, J., Yu, F.: GA-based PID and fuzzy logic control for active vehicle suspension system. International. J. Autom. Technol., 181–191 (2003)

  12. Alkhatib, R., Nakhaie Jazar, G., Golnaraghi, M.F.: Optimal design of passive linear suspension using genetic algorithms. J. Sound Vib. 275, 327–332 (2007)

    Google Scholar 

  13. Gundogdu, O.: Optimal seat and suspension design for a quarter car with driver model using genetic algorithms. Int. J. Ind. Ergon. 37(4), 327–332 (2007)

    Article  Google Scholar 

  14. Bouazara, M.: Etude et analyse de la suspension active et semi-active des vehicules routters. PhD thesis, Universite Laval, Canada (1997)

  15. Nariman-Zadeh, N., Salehpour, M., Jamali, A., Haghgoo, E.: Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm (MUGA). Eng. Appl. Artif. Intell. 23(4), 543–551 (2010)

    Article  Google Scholar 

  16. Papadrakakis, M., Lagaros, N.D., Plevris, V.: Design optimization of steel structures considering uncertainties. Eng. Struct. 27, 1408–1418 (2005)

    Article  Google Scholar 

  17. Wang, J., Wilson, D.A.: Mixed GL2/H2/GH2 control with pole placement and its application to vehicle suspension systems. Int. J. Control 74(13), 1353–1369 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Crespo, L.G., Kenny, S.P.: Robust control deign for systems with probabilistic uncertainty. NASA report, TP-2005-213531, March (2005)

  19. Wang, Q., Stengel, R.F.: Searching for robust minimal-order compensators. J. Dyn. Syst. Meas. Control 123, 223–236 (2001)

    Article  Google Scholar 

  20. Jamali, A., Nariman-Zadeh, N., Atashkari, K.: Multi-objective uniform diversity genetic algorithm (MUGA). In: Kosinski, W. (ed.) Advanced in Evolutionary Algorithms. IN-TECH, Vienna (2008)

    Google Scholar 

  21. Jamali, A., Hajiloo, A., Nariman-zadeh, N.: Reliability-based robust Pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA). Expert Syst. Appl. 37(1), 401–413 (2010)

    Article  Google Scholar 

  22. Lim, D., Ong, Y.S., Lee, B.S.: Inverse multi-objective robust evolutionary design optimization in the presence of uncertainty. In: GECCO’ 05, Washington, USA, pp. 55–62 (2005)

    Chapter  Google Scholar 

  23. Papadrakakis, M., Lagaros, N.D., Plevris, V.: Structural optimization considering the probabilistic system response. Theor. Appl. Mech. 31(3–4), 361–393 (2004)

    Article  MATH  Google Scholar 

  24. Kalos, M.H., Whitlock, P.A.: Monte Carlo Methods. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  25. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  26. Coello Coello, C.A., Becerra, R.L.: Evolutionary multiobjective optimization using a cultural algorithm. In: IEEE Swarm Intelligence Symposium, IEEE Service Center, Piscataway, NJ, pp. 6–13 (2003)

    Google Scholar 

  27. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jamali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamali, A., Salehpour, M. & Nariman-zadeh, N. Robust Pareto active suspension design for vehicle vibration model with probabilistic uncertain parameters. Multibody Syst Dyn 30, 265–285 (2013). https://doi.org/10.1007/s11044-012-9337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9337-4

Keywords

Navigation