Skip to main content
Log in

Thermal error modeling of multisource information fusion in machine tools

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Thermal deformation is one of the principal factors that influence the machining accuracy of machine tools, and it can be improved by thermal error compensation. This paper presents a method of thermal error modeling using multisource information fusion, which can further improve the thermal error compensation accuracy. To set up a fusion model with optimal performance, two or more thermal error models should be established, from which a few models should be chosen to complement each other, and then combined into a synthesis model. In this paper, a dynamic thermal error model and a finite element model are combined to build a fusion model for lathe z-direction thermal error according to a fusion algorithm. The inputs for the fusion model are the values detected by the thermal sensors and the infrared imaging. An experiment carried out on a lathe verifies the validity of this modeling method. The results show that the multisource fusion model of thermal error can not only improve the prediction accuracy of thermal error over that of a single model, but also possesses better robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools—a review: part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284

    Article  Google Scholar 

  2. Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791

    Article  Google Scholar 

  3. Yang H, Ni J (2003) Dynamic modeling for machine tool thermal error compensation. Trans Am Soc Mech Eng J Manuf Sci Eng 125(2):245–254

    Google Scholar 

  4. Ramesh R, Mannan M, Poo A (2003) Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian network support vector machine model. Int J Mach Tools Manuf 43(4):405–419

    Article  Google Scholar 

  5. Yang H, Ni J (2005) Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy. Int J Mach Tools Manuf 45(1):1–11

    Article  MathSciNet  Google Scholar 

  6. Shen HY, Fu JZ, He Y, Yao XH (2012) On-line asynchronous compensation methods for static/quasi-static error implemented on CNC machine tools. Int J Mach Tools Manuf 60:14–26

    Article  Google Scholar 

  7. Yan JY, Yang JG (2009) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11–12):1124–1132

    Article  Google Scholar 

  8. Xia C, Fu J, Xu Y, Chen Z (2014) Machine tool selected point temperature rise identification based on operational thermal modal analysis. Int J Adv Manuf Technol 70(1–4):19–31

    Article  Google Scholar 

  9. Wu CW, Tang CH, Chang CF, Shiao YS (2012) Thermal error compensation method for machine center. Int J Adv Manuf Technol 59(5–8):681–689

    Article  Google Scholar 

  10. Postlethwaite S, Allen J, Ford D (1998) The use of thermal imaging, temperature and distortion models for machine tool thermal error reduction. Proc Inst Mech Eng B J Eng Manuf 212(8):671–679

    Article  Google Scholar 

  11. Zhang CX, Gao F, Li Y, Gao YW, Zhao BH (2013) Thermal error modelling of NC machine tools based on impulse response model. In: Assembly and Manufacturing (ISAM), 2013 I.E. International Symposium on IEEE

  12. Lauro CH, Brandão LC, Ribeiro Filho SLM (2013) Monitoring the temperature of the milling process using infrared camera. Sci Res Essays 8(23):1112–1120

    Google Scholar 

  13. Mian NS, Fletcher S, Longstaff AP, Myers A (2013) Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations. Precis Eng J Int Soc Precis Eng Nanotechnol 37(2):372–379

    Google Scholar 

  14. Mian NS, Fletcher S, Longstaff AP, Myers A (2011) Efficient thermal error prediction in a machine tool using finite element analysis. Meas Sci Technol 22(8):085107

    Article  Google Scholar 

  15. Li Z, Fan K, Yang J, Zhang Y (2014) Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experimental analysis. Int J Adv Manuf Technol 73(5–8):773–782

    Article  Google Scholar 

  16. Su H, Lu L, Liang Y, Zhang Q, Sun Y (2014) Thermal analysis of the hydrostatic spindle system by the finite volume element method. Int J Adv Manuf Technol 71(9–12):1949–1959

    Article  Google Scholar 

  17. Xu M, Jiang SY, Cai Y (2007) An improved thermal model for machine tool bearings. Int J Mach Tools Manuf 47(1):53–62

    Article  Google Scholar 

  18. Mayr J, M Ess, S Weikert, K Wegener (2009) Compensation of thermal effects on machine tools using a FDEM simulation approach. Proc Lamdamap 9

  19. Kang Y, Chang CW, Huang Y, Hsu CL, Nieh IF (2007) Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools. Int J Mach Tools Manuf 47(2):376–387

    Article  Google Scholar 

  20. Steinberg AN, Bowman CL, White FE (1999) Revisions to the JDL data fusion model. In: AeroSense‘99. International Society for Optics and Photonics

  21. Khaleghi B, Khamis A, Karray FO, Razavi SN (2013) Multisensor data fusion: a review of the state-of-the-art. Inf Fusion 14(1):28–44

    Article  Google Scholar 

  22. Zhang JF, Feng PF, Chen C, Yu DW, Wu ZJ (2013) A method for thermal performance modeling and simulation of machine tools. Int J Adv Manuf Technol 68(5–8):1517–1527

    Article  Google Scholar 

  23. Zienkiewicz OC (1971) The finite element method in engineering science. McGraw-Hill

  24. Li Y, Zhao W, Wu W, Lu B, Chen Y (2014) Thermal error modeling of the spindle based on multiple variables for the precision machine tool. Int J Adv Manuf Technol 72(9–12):1415–1427

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Gao, F., Che, Y. et al. Thermal error modeling of multisource information fusion in machine tools. Int J Adv Manuf Technol 80, 791–799 (2015). https://doi.org/10.1007/s00170-015-7026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7026-1

Keywords

Navigation