Skip to main content

Advertisement

Log in

Efficient force prediction for incremental sheet forming and experimental validation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

An Erratum to this article was published on 09 May 2014

Abstract

Incremental sheet forming (ISF) has been attractive during the last decades because of its greater flexibility, increased formability and reduced forming forces. However, traditional finite element simulation used for force prediction is significantly time consuming. This study aims to provide an efficient analytical model for tangential force prediction. In the present work, forces during the cone-forming process with different wall angles and step-down sizes are recorded experimentally. Different force trends are identified and discussed with reference to different deformation mechanisms. An efficient model is proposed based on the energy method to study the deformation zone in a cone-forming process. The effects of deformation modes from shear, bending and stretching are taken into account separately by two sub-models. The final predicted tangential forces are compared with the experimental results which show an average error of 6 and 11 % in respect to the variation of step-down size and wall angle in the explored limits, respectively. The proposed model would greatly improve the prediction efficiency of forming force and benefit both the design and forming process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. Ann CIRP—Manuf Technol 54(2):623–649

    Google Scholar 

  2. Echrif SBM, Hrairi M (2011) Research and progress in incremental sheet forming processes. Mater Manuf Processes 26(11):1404–1414. doi:10.1080/10426914.2010.544817

    Article  Google Scholar 

  3. Emmens WC, Sebastiani G, van den Boogaard AH (2010) The technology of incremental sheet forming—a brief review of the history. J Mater Process Technol 210(8):981–997. doi:10.1016/j.jmatprotec.2010.02.014

    Article  Google Scholar 

  4. Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. J Mater Process Technol 191(1–3):390–395. doi:10.1016/j.jmatprotec.2007.03.066

    Article  Google Scholar 

  5. Essa K, Hartley P (2011) An assessment of various process strategies for improving precision in single point incremental forming. Int J Mater Form 4(4):401–412. doi:10.1007/s12289-010-1004-9

    Article  Google Scholar 

  6. Duflou JR, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken AM (2008) Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Ann- Manuf Technol 57(1):253–256. doi:10.1016/j.cirp.2008.03.030

    Article  Google Scholar 

  7. Duflou J, Tunçkol Y, Szekeres A, Vanherck P (2007) Experimental study on force measurements for single point incremental forming. J Mater Process Tech 189(1):65–72

    Article  Google Scholar 

  8. Filice L, Ambrogio G, Micari F (2006) On-line control of single point incremental forming operations through punch force monitoring. CIRP Ann—Manuf Technol 55(1):245–248

    Article  Google Scholar 

  9. Ambrogio G, Filice L, Micari F (2006) A force measuring based strategy for failure prevention in incremental forming. J Mater Process Technol 177(1–3):413–416

    Article  Google Scholar 

  10. Petek A, Kuzman K, Suhač B (2009) Autonomous on-line system for fracture identification at incremental sheet forming. CIRP Ann - Manuf Technol 58(1):283–286. doi:10.1016/j.cirp.2009.03.092

    Article  Google Scholar 

  11. Fiorentino A (2013) Force-based failure criterion in incremental sheet forming. Int J Adv Manuf Technol 68(1–4):557–563. doi:10.1007/s00170-013-4777-4

    Article  Google Scholar 

  12. Ingarao G, Ambrogio G, Gagliardi F, Di Lorenzo R (2012) A sustainability point of view on sheet metal forming operations: material wasting and energy consumption in incremental forming and stamping processes. J Cleaner Prod 29–30(0):255–268. doi:10.1016/j.jclepro.2012.01.012

    Article  Google Scholar 

  13. Malhotra R, Xue L, Belytschko T, Cao J (2012) Mechanics of fracture in single point incremental forming. J Mater Process Technol 212(7):1573–1590

    Article  Google Scholar 

  14. Raithatha A, Duncan S (2009) Rigid plastic model of incremental sheet deformation using second‐order cone programming. Int J Numer Methods Eng 78(8):955–979

    Article  MATH  MathSciNet  Google Scholar 

  15. Iseki H (2001) An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller. J Mater Process Technol 111(1):150–154

    Article  Google Scholar 

  16. Aerens R, Eyckens P, Van Bael A, Duflou JR (2010) Force prediction for single point incremental forming deduced from experimental and FEM observations. Int J Adv Manuf Technol 46(9):969–982

    Article  Google Scholar 

  17. Mirnia MJ, Dariani BM (2012) Analysis of incremental sheet metal forming using the upper-bound approach. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

  18. Jeswiet J, Duflou JR, Szekeres A (2005) Forces in single point and two point incremental forming. Adv Mater Res 6–8:449–456

    Article  Google Scholar 

  19. Halmos GT (2006) Roll forming handbook, vol 67, Book, Whole. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  20. Wang G, Ohtsubo H, Arita K (1998) Large deflection of a rigid-plastic circular plate pressed by a sphere. J Appl Mech 65(2):533–535. doi:10.1115/1.2789089

    Article  Google Scholar 

  21. Allwood J, Shouler D, Tekkaya AE (2007) The increased forming limits of incremental sheet forming processes. Key Eng Mater 344:621–628

    Article  Google Scholar 

  22. Smith J, Malhotra R, Liu WK, Cao J (2013) Deformation mechanics in single-point and accumulative double-sided incremental forming. The International Journal of Advanced Manufacturing Technology:1–17. doi:10.1007/s00170-013-5053-3

  23. Avitzur B, Yang CT (1960) Analysis of power spinning of cones. J Eng Ind 82(3):231. doi:10.1115/1.3663052

    Article  Google Scholar 

  24. Silva MB, Nielsen PS, Bay N, Martins PAF (2011) Failure mechanisms in single-point incremental forming of metals. Int J Adv Manuf Technol 56(9):893–903. doi:10.1007/s00170-011-3254-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanle Li.

Appendices

Appendix 1

1.1 Calculation of critical angles

As we can see from Fig. 16, the deformation zone which is being formed in current path can be divided into six regions. In radial direction, the deformation zone is divided into two parts by the radius of (r i  + ∆r). In circumferential direction, three critical angles (θ c ,  θ t and  θ t ) are used to define the assumed flow line. In Fig. 16, we can see that regions Ia, IIa and IIIa are undeformed areas during last pass so these are flat before the current forming pass, whereas regions Ib, IIb and IIIb are previously deformed in the last forming pass. Vertical positions for the sheet before the current forming pass are,

Fig. 16
figure 16

Divided deformation zone in the cone-forming process

$$ {Z}_{sa}={Z}_t+\varDelta z\kern3em \left({r}_i\le \mathrm{r}\le {r}_i+\varDelta r\right) $$
(34)
$$ {Z}_{sb}={Z}_t+\varDelta z+{r}_t-\sqrt{{r_t}^2-{\left(r-{r}_i-\varDelta z \tan \left(90-\alpha \right)\right)}^2}\kern1.5em \left({r}_i+\varDelta r\le \mathrm{r}\le {r}_o\right) $$
(35)

a) Calculation of θ c

As previously defined,  Z c is the conjunct point for curve Zf c and tool head surface, so θ ca is calculated by solving the following two equations,

$$ \left\{\begin{array}{c}\hfill {Z}_c=M\left({Z}_{s1}-{Z}_o\right)+{Z}_o\hfill \\ {}\hfill {Z}_c={Z}_{t0}+{r}_t-\sqrt{{r_t}^2-{\left(r \cos \theta -{r}_i\right)}^2-{\left(r \sin \theta \right)}^2}\hfill \end{array}\right.\kern5.5em $$
(36)

According to the geometric relations of the tool head, we have,

$$ \left\{\begin{array}{c}\hfill {Z}_o={Z}_{t0}+\left({r}_t-{r}_{tc}\right)\hfill \\ {}\hfill {r}_{tc}=\sqrt{{r_t}^2-{\left(r-{r}_i\right)}^2}\hfill \end{array}\right.\kern3em $$
(37)

The contact angle θ ca can be solved from Eqs. (37) and (38) gives

$$ {\theta}_{ca}={ \cos}^{-1}\frac{{\left(\sqrt{{r_t}^2-{\left(r-{r}_i\right)}^2}-M\left({Z}_{sa}-{Z}_o\right)\right)}^2-{r_t}^2+{r}^2+{r_i}^2}{2r{r}_i} $$
(38)

Similarly, the contact angle θ cb which separates regions Ib and IIb can be solved as,

$$ {\theta}_{cb}={ \cos}^{-1}\frac{{\left(\sqrt{{r_t}^2-{\left(r-{r}_i\right)}^2}-M\left({Z}_{sb}-{Z}_o\right)\right)}^2-{r_t}^2+{r}^2+{r_i}^2}{2r{r}_i} $$
(39)

b) Calculation of θ t

When  r i  ≤ r ≤ r i  + Δr, θ ta is calculated to define regions IIa and IIIa,

$$ \left\{\begin{array}{c}\hfill {Z}_{ta}={Z}_{t0}+\varDelta z\hfill \\ {}\hfill {Z}_t={Z}_{t0}+{r}_t-\sqrt{{r_t}^2-{\left(r \cos \theta -{r}_i\right)}^2-{\left(r \sin \theta \right)}^2}\hfill \end{array}\right. $$
(40)

Let Z ta equals  Z t , the angle θ ta can be solved as,

$$ {\theta}_{ta}={ \cos}^{-1}\frac{{\left({r}_t-\varDelta z\right)}^2-{r_t}^2+{r}^2+{r_i}^2}{2r{r}_i} $$
(41)

Similarly, for calculation of θ tb , we have

$$ \left\{\begin{array}{c}\hfill {Z}_{tb}={Z}_{t0}+\varDelta z+{r}_t-\sqrt{{r_t}^2-{\left(r-{r}_i-\varDelta z \tan \left(90-\alpha \right)\right)}^2}\hfill \\ {}\hfill {Z}_t={Z}_{t0}+{r}_t-\sqrt{{r_t}^2-{\left(r \cos \theta -{r}_i\right)}^2-{\left(r \sin \theta \right)}^2}\hfill \end{array}\right. $$
(42)
$$ {\theta}_{tb}={ \cos}^{-1}\frac{{\left(\sqrt{{r_t}^2-{\left(r-{r}_i-{d}_z \tan \left(90-\alpha \right)\right)}^2}-\varDelta z\right)}^2-{r_t}^2+{r}^2+{r_i}^2}{2r{r}_i} $$
(43)

c) Calculation of θ s

The deformation zone is assumed to be a circle with the radius of r o  − r i , so the following equations set can be given as,

$$ \left\{\begin{array}{c}\hfill {X}^2+{Y}^2={r}^2\hfill \\ {}\hfill {\left(X-{r}_i\right)}^2+{Y}^2={\left({r}_o-{r}_i\right)}^2\hfill \end{array}\right. $$
(44)

The angle θ s can be solved as,

$$ {\theta}_s={ \sin}^{-1}\frac{Y}{r} $$
(45)

Appendix 2

2.1 Calculation of average yield strength and equivalent strain

For each of the six regions, do the integral for equivalent strain. Take region Ia for example,

$$ {\overline{\varepsilon}}_{I\alpha}={\displaystyle {\iint}_0^{\theta_{ca}}}\frac{2}{\sqrt{3}}\left({\varepsilon_{\theta z}}^2+{\varepsilon_{rz}}^2\right)\mathrm{d}\theta \mathrm{d}r $$
(46)

On the velocity discontinuity surface,

$$ {\overline{\varepsilon}}_{disa}=\frac{2}{\sqrt{3}}{\varepsilon}_{\theta z}=\frac{1}{\sqrt{3}}\frac{\left|\varDelta v\right|}{v_{\theta }}.\kern1.75em $$
(47)

The average equivalent strain is given as,

$$ {\overline{\varepsilon}}_{\mathrm{avg}}=\frac{{\overline{\varepsilon}}_{\mathrm{total}}}{r_o-{r}_i}=\frac{{\overline{\varepsilon}}_{\mathrm{Ia}}+{\overline{\varepsilon}}_{\mathrm{Ib}}+{\overline{\varepsilon}}_{\mathrm{II}\upalpha}+{\overline{\varepsilon}}_{\mathrm{II}\mathrm{b}}+{\overline{\varepsilon}}_{\mathrm{II}\mathrm{I}\upalpha}+{\overline{\varepsilon}}_{\mathrm{II}\mathrm{I}\mathrm{b}}+{\overline{\varepsilon}}_{disa}+{\overline{\varepsilon}}_{disb}}{r_o-{r}_i} $$
(48)

By assuming the swift type work hardening law σ eq  = K(ε 0 + ε)n for a sheet metal, the average yield strength is obtained as,

$$ {y}_0=\frac{{\displaystyle {\int}_0^{{\overline{\varepsilon}}_{\mathrm{avg}}}}{\sigma}_{eq}\mathrm{d}\varepsilon }{{\displaystyle {\int}_0^{{\overline{\varepsilon}}_{\mathrm{avg}}}}\mathrm{d}\varepsilon }, $$
(49)

where ε is the plastic strain. Also, K, n and ε 0 are the material parameters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, Z., Lu, H. et al. Efficient force prediction for incremental sheet forming and experimental validation. Int J Adv Manuf Technol 73, 571–587 (2014). https://doi.org/10.1007/s00170-014-5665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5665-2

Keywords

Navigation