Skip to main content
Log in

Chatter stability for micromilling processes with flat end mill

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A mechanistic model is developed to predict micromilling forces with flat end mill for both shearing and ploughing-dominant cutting regimes. The model assumes that there is a critical chip thickness that determines whether a chip will form or not. Numerical method is extended to predict the chatter stability in micro end milling, which is performed based on the proposed cutting force model. The simulating procedure for predicting stability and cutting forces is presented in detail, and the stability diagram is constructed. The validation experiments are conducted to verify the simulation results. Both experimental cutting forces measured and machined workpiece surface scanned through digital microscope are analyzed and used to verify the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46(3–4):313–332

    Article  Google Scholar 

  2. Dornfeld D, Min S, Takeuchi T (2006) Recent advances in mechanical micro-machining. CIRP Ann Manuf Technol 55(2):745–768

    Article  Google Scholar 

  3. Kang IS, Kim JS, Kim JH, Kang MC, Seo YW (2007) A mechanistic model of cutting force in the micro end milling process. J Mater Proc Technol 187–188:250–255

    Article  Google Scholar 

  4. Miao JC, Chen GL, Lai XM, Li HT, Li CF (2007) Review of dynamic issues in micro-end-milling. Int J Adv Manuf Technol 31:897–904

    Article  Google Scholar 

  5. Mascardelli B, Park SS, Freiheit T (2008) Substructure coupling of micro end mills to aid in the suppression of chatter. ASME J Manuf Sci Eng 130(1):011010

    Article  Google Scholar 

  6. Vogler MP, DeVor RE, Kapoor SG (2003) Microstructure-level force prediction model for micro-milling of multi-phase materials. ASME J Manuf Sci Eng 125(2):202–209

    Article  Google Scholar 

  7. Jawahir IS, Ee KC, Dillon OW Jr (2005) Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius. Int J Mech Sci 47(10):1611–1628

    Article  MATH  Google Scholar 

  8. Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48:1–14

    Article  Google Scholar 

  9. Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann Manuf Technol 57(1):113–116

    Article  Google Scholar 

  10. Shi ZY, Liu ZQ (2010) The actual geometry of the cutting tool involved in machining. Int J Adv Manuf Technol 46:91–99

    Article  Google Scholar 

  11. Liu K, Melkote SN (2006) Material strengthening mechanisms and their contribution to size effect in micro-cutting. ASME J Manuf Sci Eng 128(3):730–738

    Article  Google Scholar 

  12. Vogler MP, Kapoor SG, DeVor RE (2004) On the modeling and analysis of machining performance in micro end milling, part II: cutting force prediction. ASME J Manuf Sci Eng 126(4):695–705

    Article  Google Scholar 

  13. Jun MBG, Liu X, DeVor RE, Kapoor SG (2006) Investigation of the dynamics of micro end milling, part 1: model development. ASME J Manuf Sci Eng 128(4):893–900

    Article  Google Scholar 

  14. Fang N (2003) Slip-line modeling of machining with a rounded-edge tool-part I: new model and theory. J Mech Phys Solids 51(4):715–742

    Article  MATH  Google Scholar 

  15. Zaman MT, Kumar AS, Rahman M, Sreeram S (2006) A three-dimensional analytical cutting force model for micro end milling operation. Int J Mach Tools Manuf 46(3–4):353–366

    Article  Google Scholar 

  16. Bao WY, Tansel IN (2000) Modeling micro end-milling operations, part I: analytical cutting force model. Int J Mach Tools Manuf 40(15):2155–2173

    Article  Google Scholar 

  17. Lee HU, Cho DE, Ehmann KF (2008) A mechanistic model of cutting forces in micro-end-milling with cutting-condition-independent cutting force coefficients. ASME J Manuf Sci Eng 130(3):0311021–0311029

    Google Scholar 

  18. Lakshmi LS, Vasu V, Krishna P, Rao BN, Rakesh S (2008) Analytical prediction of stability lobes in high-speed milling and their application to micromilling. Int J Manuf Technol Manag 13(2–4):146–168

    Google Scholar 

  19. Shi Y, Frederik M, von Utz W, Eckart U (2013) Gyroscopic and mode interaction effects on micro-end mill dynamics and chatter stability. Int J Adv Manuf Technol 65(5–8):895–907

    Article  Google Scholar 

  20. Afazov SM, Ratchev SM, Segal J, Popov AA (2012) Chatter modelling in micro-milling by considering process nonlinearities. Int J Mach Tools Manuf 56:28–38

    Article  Google Scholar 

  21. Malekian M, Park SS, Jun MBG (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49(7–8):586–598

    Article  Google Scholar 

  22. Shi Y, Frederik M, von Utz W, Eckart U (2012) Chatter frequencies of micromilling processes: influencing factors and online detection via piezoactuators. Int J Mach Tools Manuf 56:10–16

    Article  Google Scholar 

  23. Tajalli SA, Movahhedy MR, Akbari J (2012) Investigation of the effects of process damping on chatter instability in micro end milling. Procedia CIRP 1:156–161

    Article  Google Scholar 

  24. Rahnama R, Sajjadi M, Park SS (2009) Chatter suppression in micro end milling with process damping. J Mater Proc Technol 209:5766–5776

    Article  Google Scholar 

  25. Park SS, Rahnama R (2010) Robust chatter stability in micro-milling operations. CIRP Annals Manuf Technol 59:391–394

    Article  Google Scholar 

  26. Faassen RPH, van de Wouw N, Nijmeijer H, Oosterling JAJ (2007) An improved tool path model including periodic delay for chatter prediction in milling. J Comput Nonlinear Dyn 2(2):167–179

    Article  Google Scholar 

  27. Balachandran B, Zhao X (2000) A mechanics based model for study for study of dynamics of milling operations. Meccanica 35:89–109

    Article  MATH  Google Scholar 

  28. Altintas Y, Lee P (1996) A general mechanics and dynamics model for helical end mills. CIRP Ann Manuf Technol 45(1):59–64

    Article  Google Scholar 

  29. Malekian M, Park SS (2007) Investigation of micro milling forces for aluminum. Trans SME NAMRI 35(1):417–424

    Google Scholar 

  30. Insperger T, Stepan G (2002) Semi-discretization method for delayed systems. Int J Numer Methods Eng 55:503–518

    Article  MATH  MathSciNet  Google Scholar 

  31. Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis. ASME J Manuf Sci Eng 125:220–225

    Article  Google Scholar 

  32. Song QH, Ai X, Zhao J (2011) Design for variable pitch end mills with high milling stability. Int J Adv Manuf Technol 55:891–903

    Article  Google Scholar 

  33. Gradišek J, Kalveram M, Insperger T, Weinert K, Stépán G, Govekar E, Grabec I (2005) On stability prediction for milling. Int J Mach Tools Manuf 45(7–8):741–991

    Google Scholar 

  34. Ji CH, Liu ZQ (2012) Numerical analysis of aeroacoustic noise for high-speed face milling cutters in three dimensional unsteady flow fields. ASME J Manuf Sci Eng 134:041002

    Article  Google Scholar 

  35. Zhang T, Liu ZQ, Xu CH (2013) Influence of size effect on burr formation in micro cutting. Int J Adv Manuf Technol 68(9–12):1911–1917

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Song.

Appendix

Appendix

  1. 1.

    If h > h c, transforming the cutting forces (the first equation in Eq. (12)) from the cutter coordinates to the global coordinates, obtained

    $$ \begin{array}{l}\left\{\begin{array}{c}\hfill \varDelta {F}_x^j\left(z,t\right)\hfill \\ {}\hfill \varDelta {F}_y^j\left(z,t\right)\hfill \\ {}\hfill \varDelta {F}_z^j\left(z,t\right)\hfill \end{array}\right\}=\left[\begin{array}{ccc}\hfill - \sin \varphi \left(t,j,z\right)\hfill & \hfill - \cos \varphi \left(t,j,z\right)\hfill & \hfill 0\hfill \\ {}\hfill - \cos \varphi \left(t,j,z\right)\hfill & \hfill \sin \varphi \left(t,j,z\right)\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill \end{array}\right]\left\{\begin{array}{c}\hfill \varDelta {F}_{\mathrm{r}}^j(t)\hfill \\ {}\hfill \varDelta {F}_{\mathrm{t}}^j(t)\hfill \\ {}\hfill \varDelta {F}_{\mathrm{z}}^j(t)\hfill \end{array}\right\}\hfill \\ {}=\left(\left[\begin{array}{cc}\hfill {\mathrm{DK}}_{11}^j\left(z,t\right)\hfill & \hfill {\mathrm{DK}}_{12}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DK}}_{21}^j\left(z,t\right)\hfill & \hfill {\mathrm{DK}}_{22}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DK}}_{31}^j\left(z,t\right)\hfill & \hfill {\mathrm{DK}}_{32}^j\left(z,t\right)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill A(t)\hfill \\ {}\hfill B(t)\hfill \end{array}\right\}+\left[\begin{array}{cc}\hfill {\mathrm{DC}}_{11}^j\left(z,t\right)\hfill & \hfill {\mathrm{DC}}_{12}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DC}}_{21}^j\left(z,t\right)\hfill & \hfill {\mathrm{DC}}_{22}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DC}}_{31}^j\left(z,t\right)\hfill & \hfill {\mathrm{DC}}_{32}^j\left(z,t\right)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill \overset{.}{A}(t)\hfill \\ {}\hfill \overset{.}{B}(t)\hfill \end{array}\right\}+\left\{\begin{array}{c}\hfill {\mathrm{DE}}_1^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DE}}_2^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DE}}_3^j\left(z,t\right)\hfill \end{array}\right\}\right)\varDelta z\hfill \end{array} $$
    (A.1)

    where

    $$ \begin{array}{c}\hfill \left\{\begin{array}{c}\hfill {\mathrm{DK}}_{11}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DK}}_{12}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DK}}_{21}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DK}}_{22}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DK}}_{31}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DK}}_{32}^j\left(z,t\right)\hfill \end{array}\right\}=\left[\begin{array}{ccccc}\hfill -{k}_1{K}_{\mathrm{tc}}\hfill & \hfill -\left({k}_2{K}_{\mathrm{tc}}+{k}_1{C}_{\mathrm{p}}\varOmega \right)\hfill & \hfill -{k}_2{C}_{\mathrm{p}}\varOmega \hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {k}_1{C}_{\mathrm{p}}\varOmega \hfill & \hfill \left({k}_2{C}_{\mathrm{p}}\varOmega -{k}_1{K}_{\mathrm{tc}}\right)\hfill & \hfill -{k}_2{K}_{\mathrm{tc}}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {k}_2{K}_{\mathrm{tc}}\hfill & \hfill \left({k}_2{C}_{\mathrm{p}}\varOmega -{k}_1{K}_{\mathrm{tc}}\right)\hfill & \hfill -{k}_1{C}_{\mathrm{p}}\varOmega \hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -{k}_2{C}_{\mathrm{p}}\varOmega \hfill & \hfill \left({k}_2{K}_{\mathrm{tc}}+{k}_1{C}_{\mathrm{p}}\varOmega \right)\hfill & \hfill -{k}_1{K}_{\mathrm{tc}}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {k}_3{K}_{\mathrm{tc}}\hfill & \hfill {k}_3{C}_{\mathrm{p}}\varOmega \hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{k}_3{C}_{\mathrm{p}}\varOmega \hfill & \hfill {k}_3{K}_{\mathrm{tc}}\hfill \end{array}\right]\left\{\begin{array}{c}\hfill { \sin}^2\varphi \left(t,j,z\right)\hfill \\ {}\hfill \frac{1}{2} \sin 2\varphi \left(t,j,z\right)\hfill \\ {}\hfill { \cos}^2\varphi \left(t,j,z\right)\hfill \\ {}\hfill \sin \varphi \left(t,j,z\right)\hfill \\ {}\hfill \cos \varphi \left(t,j,z\right)\hfill \end{array}\right\}\hfill \\ {}\hfill =\varLambda \left\{\begin{array}{c}\hfill { \sin}^2\varphi \left(t,j,z\right)\hfill \\ {}\hfill \frac{1}{2} \sin 2\varphi \left(t,j,z\right)\hfill \\ {}\hfill { \cos}^2\varphi \left(t,j,z\right)\hfill \\ {}\hfill \sin \varphi \left(t,j,z\right)\hfill \\ {}\hfill \cos \varphi \left(t,j,z\right)\hfill \end{array}\right\}\hfill \end{array} $$
    (A.2)
    $$ \left\{\begin{array}{c}\hfill {\mathrm{DC}}_{11}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DC}}_{12}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DC}}_{21}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DC}}_{22}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DC}}_{31}^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DC}}_{32}^j\left(z,t\right)\hfill \end{array}\right\}=\left[\begin{array}{ccccc}\hfill -{k}_1{C}_{\mathrm{p}}\hfill & \hfill -{k}_2{C}_{\mathrm{p}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill -{k}_1{C}_{\mathrm{p}}\hfill & \hfill -{k}_2{C}_{\mathrm{p}}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {k}_2{C}_{\mathrm{p}}\hfill & \hfill -{k}_1{C}_{\mathrm{p}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill {k}_2{C}_{\mathrm{p}}\hfill & \hfill -{k}_1{C}_{\mathrm{p}}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {k}_3{C}_{\mathrm{p}}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {k}_3{C}_{\mathrm{p}}\hfill \end{array}\right]\left\{\begin{array}{c}\hfill { \sin}^2\varphi \left(t,j,z\right)\hfill \\ {}\hfill \frac{1}{2} \sin 2\varphi \left(t,j,z\right)\hfill \\ {}\hfill { \cos}^2\varphi \left(t,j,z\right)\hfill \\ {}\hfill \sin \varphi \left(t,j,z\right)\hfill \\ {}\hfill \cos \varphi \left(t,j,z\right)\hfill \end{array}\right\}=\varGamma \left\{\begin{array}{c}\hfill { \sin}^2\varphi \left(t,j,z\right)\hfill \\ {}\hfill \frac{1}{2} \sin 2\varphi \left(t,j,z\right)\hfill \\ {}\hfill { \cos}^2\varphi \left(t,j,z\right)\hfill \\ {}\hfill \sin \varphi \left(t,j,z\right)\hfill \\ {}\hfill \cos \varphi \left(t,j,z\right)\hfill \end{array}\right\} $$
    (A.3)
    $$ \left\{\begin{array}{c}\hfill {\mathrm{DE}}_1^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DE}}_2^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DE}}_3^j\left(z,t\right)\hfill \end{array}\right\}=\left[\begin{array}{ccc}\hfill -{K}_{\mathrm{re}}\hfill & \hfill -{K}_{\mathrm{te}}\hfill & \hfill 0\hfill \\ {}\hfill {K}_{\mathrm{te}}\hfill & \hfill -{K}_{\mathrm{re}}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill {K}_{\mathrm{ze}}\hfill \end{array}\right]\left\{\begin{array}{c}\hfill \sin \varphi \left(t,j,z\right)\hfill \\ {}\hfill \cos \varphi \left(t,j,z\right)\hfill \\ {}\hfill 1\hfill \end{array}\right\}=\varTheta \left\{\begin{array}{c}\hfill \sin \varphi \left(t,j,z\right)\hfill \\ {}\hfill \cos \varphi \left(t,j,z\right)\hfill \\ {}\hfill 1\hfill \end{array}\right\} $$
    (A.4)

    Integrating Eq. (A.1) with respect to z, obtained

    $$ \left\{\begin{array}{c}\hfill {F}_x^j(t)\hfill \\ {}\hfill {F}_y^j(t)\hfill \\ {}\hfill {F}_z^j(t)\hfill \end{array}\right\}={\displaystyle {\int}_{z_1}^{z_2}\left\{\begin{array}{c}\hfill \mathrm{d}{F}_x^j\left(z,t\right)\hfill \\ {}\hfill \mathrm{d}{F}_y^j\left(z,t\right)\hfill \\ {}\hfill \mathrm{d}{F}_z^j\left(z,t\right)\hfill \end{array}\right\}}=\left[\begin{array}{cc}\hfill {K}_{11}^j(t)\hfill & \hfill {K}_{12}^j(t)\hfill \\ {}\hfill {K}_{21}^j(t)\hfill & \hfill {K}_{22}^j(t)\hfill \\ {}\hfill {K}_{31}^j(t)\hfill & \hfill {K}_{32}^j(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill A(t)\hfill \\ {}\hfill B(t)\hfill \end{array}\right\}+\left[\begin{array}{cc}\hfill {C}_{11}^j(t)\hfill & \hfill {C}_{12}^j(t)\hfill \\ {}\hfill {C}_{21}^j(t)\hfill & \hfill {C}_{22}^j(t)\hfill \\ {}\hfill {C}_{31}^j(t)\hfill & \hfill {C}_{32}^j(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill \overset{.}{A}(t)\hfill \\ {}\hfill \overset{.}{B}(t)\hfill \end{array}\right\}+\left\{\begin{array}{c}\hfill {E}_1^j(t)\hfill \\ {}\hfill {E}_2^j(t)\hfill \\ {}\hfill {E}_3^j(t)\hfill \end{array}\right\} $$
    (A.5)

    where

    $$ \left[\begin{array}{cc}\hfill {K}_{11}^j(t)\hfill & \hfill {K}_{12}^j(t)\hfill \\ {}\hfill {K}_{21}^j(t)\hfill & \hfill {K}_{22}^j(t)\hfill \\ {}\hfill {K}_{31}^j(t)\hfill & \hfill {K}_{32}^j(t)\hfill \end{array}\right]=\varLambda \left\{\begin{array}{c}\hfill \mathrm{ss}\left(t,j\right)\hfill \\ {}\hfill \mathrm{sc}\left(t,j\right)\hfill \\ {}\hfill \mathrm{cc}\left(t,j\right)\hfill \\ {}\hfill s\left(t,j\right)\hfill \\ {}\hfill c\left(t,j\right)\hfill \end{array}\right\},\left[\begin{array}{cc}\hfill {C}_{11}^j(t)\hfill & \hfill {C}_{12}^j(t)\hfill \\ {}\hfill {C}_{21}^j(t)\hfill & \hfill {C}_{22}^j(t)\hfill \\ {}\hfill {C}_{31}^j(t)\hfill & \hfill {C}_{32}^j(t)\hfill \end{array}\right]=\varGamma \left\{\begin{array}{c}\hfill \mathrm{ss}\left(t,j\right)\hfill \\ {}\hfill \mathrm{sc}\left(t,j\right)\hfill \\ {}\hfill \mathrm{cc}\left(t,j\right)\hfill \\ {}\hfill s\left(t,j\right)\hfill \\ {}\hfill c\left(t,j\right)\hfill \end{array}\right\},\left\{\begin{array}{c}\hfill {E}_1^j(t)\hfill \\ {}\hfill {E}_2^j(t)\hfill \\ {}\hfill {E}_3^j(t)\hfill \end{array}\right\}=\varTheta \left\{\begin{array}{c}\hfill s\left(t,j\right)\hfill \\ {}\hfill c\left(t,j\right)\hfill \\ {}\hfill \varDelta z\hfill \end{array}\right\} $$
    (A.6)

    here

    $$ \begin{array}{c}\hfill \mathrm{ss}\left(t,j\right)={\displaystyle {\int}_{z_1}^{z_2}{ \sin}^2\varphi \left(t,j,z\right)\mathrm{d}z}, sc\left(t,j\right)={\displaystyle {\int}_{z_1}^{z_2}\frac{1}{2} \sin 2\varphi \left(t,j,z\right)\mathrm{d}z}, cc\left(t,j\right)={\displaystyle {\int}_{z_1}^{z_2}{ \cos}^2\varphi \left(t,j,z\right)\mathrm{d}z},\hfill \\ {}\hfill s\left(t,j\right)={\displaystyle {\int}_{z_1}^{z_2} \sin \varphi \left(t,j,z\right)\mathrm{d}z},c\left(t,j\right)={\displaystyle {\int}_{z_1}^{z_2} \cos \varphi \left(t,j,z\right)\mathrm{d}z}\hfill \end{array} $$
    (A.7)

    Summing the cutting forces over all of the N number of teeth,

    $$ \begin{array}{l}\left\{\begin{array}{c}\hfill {F}_x(t)\hfill \\ {}\hfill {F}_y(t)\hfill \\ {}\hfill {F}_z(t)\hfill \end{array}\right\}={\displaystyle \sum_{j=1}^N\left\{\begin{array}{c}\hfill {F}_x^j(t)\hfill \\ {}\hfill {F}_y^j(t)\hfill \\ {}\hfill {F}_z^j(t)\hfill \end{array}\right\}}={\displaystyle \sum_{j=1}^N\left[\begin{array}{cc}\hfill {K}_{11}^j(t)\hfill & \hfill {K}_{12}^j(t)\hfill \\ {}\hfill {K}_{21}^j(t)\hfill & \hfill {K}_{22}^j(t)\hfill \\ {}\hfill {K}_{31}^j(t)\hfill & \hfill {K}_{32}^j(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill A(t)\hfill \\ {}\hfill B(t)\hfill \end{array}\right\}}+{\displaystyle \sum_{j=1}^N\left[\begin{array}{cc}\hfill {C}_{11}^j(t)\hfill & \hfill {C}_{12}^j(t)\hfill \\ {}\hfill {C}_{21}^j(t)\hfill & \hfill {C}_{22}^j(t)\hfill \\ {}\hfill {C}_{31}^j(t)\hfill & \hfill {C}_{32}^j(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill \overset{.}{A}(t)\hfill \\ {}\hfill \overset{.}{B}(t)\hfill \end{array}\right\}}+{\displaystyle \sum_{j=1}^N\left\{\begin{array}{c}\hfill {E}_1^j(t)\hfill \\ {}\hfill {E}_2^j(t)\hfill \\ {}\hfill {E}_3^j(t)\hfill \end{array}\right\}}\hfill \\ {}=\left[\begin{array}{cc}\hfill {K}_{11}(t)\hfill & \hfill {K}_{12}(t)\hfill \\ {}\hfill {K}_{21}(t)\hfill & \hfill {K}_{22}(t)\hfill \\ {}\hfill {K}_{31}(t)\hfill & \hfill {K}_{32}(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill A(t)\hfill \\ {}\hfill B(t)\hfill \end{array}\right\}+\left[\begin{array}{cc}\hfill {C}_{11}(t)\hfill & \hfill {C}_{12}(t)\hfill \\ {}\hfill {C}_{21}(t)\hfill & \hfill {C}_{22}(t)\hfill \\ {}\hfill {C}_{31}(t)\hfill & \hfill {C}_{32}(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill \overset{.}{A}(t)\hfill \\ {}\hfill \overset{.}{B}(t)\hfill \end{array}\right\}+\left\{\begin{array}{c}\hfill {E}_1(t)\hfill \\ {}\hfill {E}_2(t)\hfill \\ {}\hfill {E}_3(t)\hfill \end{array}\right\}\hfill \\ {}=\left[\begin{array}{cc}\hfill {K}_{11}(t)\hfill & \hfill {K}_{12}(t)\hfill \\ {}\hfill {K}_{21}(t)\hfill & \hfill {K}_{22}(t)\hfill \\ {}\hfill {K}_{31}(t)\hfill & \hfill {K}_{32}(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill {q}_x(t)-{q}_x\left(t-{\tau}_1\right)+{q}_u(t)-{q}_u\left(t-{\tau}_1\right)+{\tau}_1f\hfill \\ {}\hfill {q}_y(t)-{q}_y\left(t-{\tau}_2\right)+{q}_v(t)-{q}_v\left(t-{\tau}_2\right)\hfill \end{array}\right\}\hfill \\ {}+\left[\begin{array}{cc}\hfill {C}_{11}(t)\hfill & \hfill {C}_{12}(t)\hfill \\ {}\hfill {C}_{21}(t)\hfill & \hfill {C}_{22}(t)\hfill \\ {}\hfill {C}_{31}(t)\hfill & \hfill {C}_{32}(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill {\overset{.}{q}}_x(t)-{\overset{.}{q}}_x\left(t-{\tau}_1\right)+{\overset{.}{q}}_u(t)-{\overset{.}{q}}_u\left(t-{\tau}_1\right)\hfill \\ {}\hfill \overset{.}{q_y}(t)-\overset{.}{q_y}\left(t-{\tau}_2\right)+\overset{.}{q_v}(t)-\overset{.}{q_v}\left(t-{\tau}_2\right)\hfill \end{array}\right\}+\left\{\begin{array}{c}\hfill {E}_1(t)\hfill \\ {}\hfill {E}_2(t)\hfill \\ {}\hfill {E}_3(t)\hfill \end{array}\right\}\hfill \\ {}=\left[\begin{array}{cccc}\hfill {K}_{11}(t)\hfill & \hfill {K}_{12}(t)\hfill & \hfill {K}_{11}(t)\hfill & \hfill {K}_{12}(t)\hfill \\ {}\hfill {K}_{21}(t)\hfill & \hfill {K}_{22}(t)\hfill & \hfill {K}_{21}(t)\hfill & \hfill {K}_{22}(t)\hfill \\ {}\hfill {K}_{11}(t)\hfill & \hfill {K}_{12}(t)\hfill & \hfill {K}_{11}(t)\hfill & \hfill {K}_{12}(t)\hfill \\ {}\hfill {K}_{21}(t)\hfill & \hfill {K}_{22}(t)\hfill & \hfill {K}_{21}(t)\hfill & \hfill {K}_{22}(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill {q}_x(t)\hfill \\ {}\hfill {q}_y(t)\hfill \\ {}\hfill {q}_u(t)\hfill \\ {}\hfill {q}_v(t)\hfill \end{array}\right\}-\left[\begin{array}{cccc}\hfill {K}_{11}(t)\hfill & \hfill {K}_{12}(t)\hfill & \hfill {K}_{11}(t)\hfill & \hfill {K}_{12}(t)\hfill \\ {}\hfill {K}_{21}(t)\hfill & \hfill {K}_{22}(t)\hfill & \hfill {K}_{21}(t)\hfill & \hfill {K}_{22}(t)\hfill \\ {}\hfill {K}_{11}(t)\hfill & \hfill {K}_{12}(t)\hfill & \hfill {K}_{11}(t)\hfill & \hfill {K}_{12}(t)\hfill \\ {}\hfill {K}_{21}(t)\hfill & \hfill {K}_{22}(t)\hfill & \hfill {K}_{21}(t)\hfill & \hfill {K}_{22}(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill {q}_x\left(t-{\tau}_1\right)\hfill \\ {}\hfill {q}_y\left(t-{\tau}_2\right)\hfill \\ {}\hfill {q}_u\left(t-{\tau}_1\right)\hfill \\ {}\hfill {q}_v\left(t-{\tau}_2\right)\hfill \end{array}\right\}+\left\{\begin{array}{c}\hfill {K}_{11}(t)\hfill \\ {}\hfill {K}_{21}(t)\hfill \\ {}\hfill {K}_{11}(t)\hfill \\ {}\hfill {K}_{21}(t)\hfill \end{array}\right\}{\tau}_1f\hfill \\ {}+\left[\begin{array}{cccc}\hfill {C}_{11}(t)\hfill & \hfill {C}_{12}(t)\hfill & \hfill {C}_{11}(t)\hfill & \hfill {C}_{12}(t)\hfill \\ {}\hfill {C}_{21}(t)\hfill & \hfill {C}_{22}(t)\hfill & \hfill {C}_{21}(t)\hfill & \hfill {C}_{22}(t)\hfill \\ {}\hfill {C}_{11}(t)\hfill & \hfill {C}_{12}(t)\hfill & \hfill {C}_{11}(t)\hfill & \hfill {C}_{12}(t)\hfill \\ {}\hfill {C}_{21}(t)\hfill & \hfill {C}_{22}(t)\hfill & \hfill {C}_{21}(t)\hfill & \hfill {C}_{22}(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill \overset{.}{q_x}(t)\hfill \\ {}\hfill \overset{.}{q_y}(t)\hfill \\ {}\hfill \overset{.}{q_u}(t)\hfill \\ {}\hfill \overset{.}{q_v}(t)\hfill \end{array}\right\}-\left[\begin{array}{cccc}\hfill {C}_{11}(t)\hfill & \hfill {C}_{12}(t)\hfill & \hfill {C}_{11}(t)\hfill & \hfill {C}_{12}(t)\hfill \\ {}\hfill {C}_{21}(t)\hfill & \hfill {C}_{22}(t)\hfill & \hfill {C}_{21}(t)\hfill & \hfill {C}_{22}(t)\hfill \\ {}\hfill {C}_{11}(t)\hfill & \hfill {C}_{12}(t)\hfill & \hfill {C}_{11}(t)\hfill & \hfill {C}_{12}(t)\hfill \\ {}\hfill {C}_{21}(t)\hfill & \hfill {C}_{22}(t)\hfill & \hfill {C}_{21}(t)\hfill & \hfill {C}_{22}(t)\hfill \end{array}\right]\left\{\begin{array}{c}\hfill \overset{.}{q_x}\left(t-{\tau}_1\right)\hfill \\ {}\hfill \overset{.}{q_y}\left(t-{\tau}_2\right)\hfill \\ {}\hfill \overset{.}{q_u}\left(t-{\tau}_1\right)\hfill \\ {}\hfill \overset{.}{q_v}\left(t-{\tau}_2\right)\hfill \end{array}\right\}+\left\{\begin{array}{c}\hfill {E}_1(t)\hfill \\ {}\hfill {E}_2(t)\hfill \\ {}\hfill {E}_3(t)\hfill \end{array}\right\}\hfill \\ {}=\mathbf{K}(t)\mathbf{q}(t)-\mathbf{K}(t)\mathbf{q}\left(t-{\tau}_{1,2}\right)+\widehat{\mathbf{K}}(t){\tau}_1f+\mathbf{C}(t)\overset{.}{\mathbf{q}}(t)-\mathbf{C}(t)\overset{.}{\mathbf{q}}\left(t-{\tau}_{1,2}\right)+\mathbf{E}(t)\hfill \end{array} $$
    (A.8)
  2. 2.

    If 0 < hh c, transforming the cutting forces (the first equation in Eq. (12)) from the cutter coordinates to the global coordinates, obtained

    $$ \begin{array}{l}\left\{\begin{array}{c}\hfill \varDelta {F}_x^j\left(z,t\right)\hfill \\ {}\hfill \varDelta {F}_y^j\left(z,t\right)\hfill \\ {}\hfill \varDelta {F}_z^j\left(z,t\right)\hfill \end{array}\right\}=\left[\begin{array}{ccc}\hfill - \sin \varphi \left(t,j,z\right)\hfill & \hfill - \cos \varphi \left(t,j,z\right)\hfill & \hfill 0\hfill \\ {}\hfill - \cos \varphi \left(t,j,z\right)\hfill & \hfill \sin \varphi \left(t,j,z\right)\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill \end{array}\right]\left(\left\{\begin{array}{c}\hfill {K}_{\mathrm{rpc}}\hfill \\ {}\hfill {K}_{\mathrm{tpc}}\hfill \\ {}\hfill {K}_{\mathrm{apc}}\hfill \end{array}\right\}{A}_{\mathrm{p}}+\left\{\begin{array}{c}\hfill {K}_{\mathrm{re}}\hfill \\ {}\hfill {K}_{\mathrm{te}}\hfill \\ {}\hfill {K}_{\mathrm{ae}}\hfill \end{array}\right\}\right)\varDelta z\hfill \\ {}=\left(\left\{\begin{array}{c}\hfill {\mathrm{DP}}_1^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DP}}_2^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DP}}_3^j\left(z,t\right)\hfill \end{array}\right\}{A}_{\mathrm{p}}+\left\{\begin{array}{c}\hfill {\mathrm{DE}}_1^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DE}}_2^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DE}}_3^j\left(z,t\right)\hfill \end{array}\right\}\right)\varDelta z\hfill \end{array} $$
    (A.9)

    where

    $$ \left\{\begin{array}{c}\hfill {\mathrm{DP}}_1^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DP}}_2^j\left(z,t\right)\hfill \\ {}\hfill {\mathrm{DP}}_3^j\left(z,t\right)\hfill \end{array}\right\}=\left[\begin{array}{ccc}\hfill -{K}_{\mathrm{rpc}}\hfill & \hfill -{K}_{\mathrm{tpc}}\hfill & \hfill 0\hfill \\ {}\hfill {K}_{\mathrm{tpc}}\hfill & \hfill -{K}_{\mathrm{rpc}}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill {K}_{\mathrm{apc}}\hfill \end{array}\right]\left\{\begin{array}{c}\hfill \sin \varphi \left(t,j,z\right)\hfill \\ {}\hfill \cos \varphi \left(t,j,z\right)\hfill \\ {}\hfill 1\hfill \end{array}\right\} $$
    (A.10)

    Integrating Eq. (A.8) with respect to z, obtained

    $$ \left\{\begin{array}{c}\hfill {F}_x^j(t)\hfill \\ {}\hfill {F}_y^j(t)\hfill \\ {}\hfill {F}_z^j(t)\hfill \end{array}\right\}={\displaystyle {\int}_{z_1}^{z_2}\left\{\begin{array}{c}\hfill \mathrm{d}{F}_x^j\left(z,t\right)\hfill \\ {}\hfill \mathrm{d}{F}_y^j\left(z,t\right)\hfill \\ {}\hfill \mathrm{d}{F}_z^j\left(z,t\right)\hfill \end{array}\right\}}=\left\{\begin{array}{c}\hfill {P}_1^j(t)\hfill \\ {}\hfill {P}_2^j(t)\hfill \\ {}\hfill {P}_3^j(t)\hfill \end{array}\right\}{A}_{\mathrm{p}}+\left\{\begin{array}{c}\hfill {E}_1^j(t)\hfill \\ {}\hfill {E}_2^j(t)\hfill \\ {}\hfill {E}_3^j(t)\hfill \end{array}\right\} $$
    (A.11)

    where

    $$ \left\{\begin{array}{c}\hfill {P}_1^j(t)\hfill \\ {}\hfill {P}_2^j(t)\hfill \\ {}\hfill {P}_3^j(t)\hfill \end{array}\right\}=\varUpsilon \left\{\begin{array}{c}\hfill s\left(t,j\right)\hfill \\ {}\hfill c\left(t,j\right)\hfill \\ {}\hfill \varDelta z\hfill \end{array}\right\} $$
    (A.12)

    Summing the cutting forces over all of the N number of teeth,

    $$ \begin{array}{l}\left\{\begin{array}{c}\hfill {F}_x(t)\hfill \\ {}\hfill {F}_y(t)\hfill \\ {}\hfill {F}_z(t)\hfill \end{array}\right\}={\displaystyle \sum_{j=1}^N\left\{\begin{array}{c}\hfill {F}_x^j(t)\hfill \\ {}\hfill {F}_y^j(t)\hfill \\ {}\hfill {F}_z^j(t)\hfill \end{array}\right\}}={\displaystyle \sum_{j=1}^N\left\{\begin{array}{c}\hfill {P}_1^j(t)\hfill \\ {}\hfill {P}_2^j(t)\hfill \\ {}\hfill {P}_3^j(t)\hfill \end{array}\right\}{A}_{\mathrm{p}}}+{\displaystyle \sum_{j=1}^N\left\{\begin{array}{c}\hfill {E}_1^j(t)\hfill \\ {}\hfill {E}_2^j(t)\hfill \\ {}\hfill {E}_3^j(t)\hfill \end{array}\right\}}\hfill \\ {}=\left\{\begin{array}{c}\hfill {P}_1(t)\hfill \\ {}\hfill {P}_2(t)\hfill \\ {}\hfill {P}_3(t)\hfill \end{array}\right\}{A}_{\mathrm{p}}+\left\{\begin{array}{c}\hfill {E}_1(t)\hfill \\ {}\hfill {E}_2(t)\hfill \\ {}\hfill {E}_3(t)\hfill \end{array}\right\}=\mathbf{P}(t){A}_{\mathrm{p}}+\mathbf{E}(t)\hfill \end{array} $$
    (A.13)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Q., Liu, Z. & Shi, Z. Chatter stability for micromilling processes with flat end mill. Int J Adv Manuf Technol 71, 1159–1174 (2014). https://doi.org/10.1007/s00170-013-5554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5554-0

Keywords

Navigation