Skip to main content

Advertisement

Log in

Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Thermal sensor selection is a work of great importance when modeling thermal error. The proper selection of thermal sensors and their locations may greatly improve the prediction accuracy. In this article, the fuzzy C means (FCM) clustering method and the ISODATA method are used to group the data of thermal sensors and a genetic algorithm–back propagation artificial neural network thermal model is established to testify the accuracy. A validity criterion for the FCM method is put forward to guarantee the precision of the model. Both the FCM and the ISODATA methods are effective for thermal sensor selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oxley BPL (1989) Mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood Ltd, UK, p 242

    Google Scholar 

  2. Kuo WL, Lin JF (2006) General temperature rise solution for a moving plane heat source problem in surface grinding. Int J Adv Manuf Technol 31:268–277

    Article  Google Scholar 

  3. Khani F, Aziz A (2010) Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient. Commun Nonlinear Sci Numer Simul 15(3):590–601

    Article  Google Scholar 

  4. Kim SK, Cho DW (1997) Real-time estimation of temperature distribution in a ball-screw system. Int J Mach Tools Manuf 37(4):451–464

    Article  Google Scholar 

  5. Xu M, Jiang SY, Cai Y (2007) An improved thermal model for machine tool bearings. Int J Mach Tools Manuf 47(1):53–62

    Article  Google Scholar 

  6. Li HQ, Shin YC (2004) Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model. Int J Mach Tools Manuf 44(4):347–364

    Article  Google Scholar 

  7. Li JW, Zhang WJ, Yang GS, Tu SD (2009) Thermal-error modeling for complex physical systems: the state of arts review. Int J Adv Manuf Technol 42:168–179

    Article  Google Scholar 

  8. Wu CH, Kung YT (2006) Thermal analysis and compensation of a double-column machining centre. J Eng Manuf 220(2):109–117

    Article  Google Scholar 

  9. Yang JG, Yuan JX, Ni J (1999) Thermal error mode analysis and robust modeling for error compensation on a CNC turning center. Int J Mach Tools Manuf 39(9):1367–1381

    Article  Google Scholar 

  10. Guo QJ, Yang JG, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50:667–675

    Article  Google Scholar 

  11. Han J, Wang LP, Wang HT, Cheng NB (2012) A new thermal error modeling method for CNC machine tools. Int J Adv Manuf Technol 62:205–212

    Article  Google Scholar 

  12. Han J, Wang LP, Cheng NB, Wang HT (2012) Thermal error modeling of machine tool based on fuzzy C-means cluster analysis and minimal-resource allocating networks. Int J Adv Manuf Technol 60(5–8):463–472

    Article  Google Scholar 

  13. Yang JG, Ren YQ, Liu GL, Zhao HT, Dou XL, Chen WZ, He SW (2005) Testing, variable selecting and modeling of thermal errors on an INDEX-G200 turning center. Int J Adv Manuf Technol 26:814–818

    Article  Google Scholar 

  14. Wang KC, Tseng PC, Lin KM (2006) Thermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference system. Jsme Int J C-Mech Sy 49(4):1179–1187

    Article  Google Scholar 

  15. Lin ZC, Chang JS (2007) The building of spindle thermal displacement model of high speed machine center. Int J Adv Manuf Technol 34:556–566

    Article  Google Scholar 

  16. Yang H, Ni J (2005) Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error. Int J Mach Tools Manuf 45(4–5):455–465

    Article  Google Scholar 

  17. Li YX, Yang JG, Gelivis T, Li YY (2008) Optimization of measuring points for machine tool thermal error based on grey system theory. Int J Adv Manuf Technol 35:745–750

    Article  Google Scholar 

  18. Yan JY, Yang JG (2009) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11–12):1124–1132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wang, L., Li, T. et al. Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method. Int J Adv Manuf Technol 69, 121–126 (2013). https://doi.org/10.1007/s00170-013-4998-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-4998-6

Keywords

Navigation