Skip to main content
Log in

Nanohydroxyapatite synthesized from calcium oxide and its characterization

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Spherical and nano-sized hydroxyapatite (HAp) was synthesized from calcium oxide by a continuous rapid precipitation method without using any secondary route. The maximum particles have a size around 10 nm according to X-ray diffraction (XRD), 35 nm based on scanning electron microscopy (SEM) and 15 nm according to transmission electron microscopy (TEM) studies. The sintering effects on structural properties of HAp were studied by XRD, Fourier transformation infrared (FTIR), 31P solid-state nuclear magnetic resonance (NMR) and Raman spectroscopy. The particle size varied from 5 to 70 nm and nanopores from 10 to 450 nm were revealed by SEM and transmission electron microscopy TEM. This result was also strongly supported by XRD study. The combined effect of heating and centrifuging force exerted by vigorous magnetic stirring causes the dispersion of tiny crystals followed by precipitation to form spherical shaped particles. The chemical structure of HAp was established by FTIR, NMR and Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neuman WF, Bjornerstedt R, Mulryan BJ (1962) Synthetic hydroxy apatite crystals II aging and strontium incorporation. Arch Biochem Biophys 98:384–390

    Article  Google Scholar 

  2. Neuman WF, Mulryan BJ (1967) Synthetic hydroxyapatite crystals III the carbonate system. Calcif Tissue Res 1:94–104

    Article  Google Scholar 

  3. Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247:220–222

    Article  Google Scholar 

  4. Innes JK, Vago R, Ben-Nissan B (2003) Hydrothermal conversion and sol–gel coating of red sea coral. Key Eng Mat 240:43–46

    Article  Google Scholar 

  5. LeGeros RZ (1994) Biological and synthetic apatites. In: Brown PW, Constantz B (eds) Hydroxyapatite and related materials. CRC Press Inc., Boca Raton, pp 3–28

    Google Scholar 

  6. Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAC, Stucky GD, Morse DE, Hansma PK (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4:612–616

    Article  Google Scholar 

  7. Hattori T, Iwadate Y (1990) Hydrothermal preparation of calcium hydroxyapatite powders. J Am Ceram Soc 73:1803–1805

    Article  Google Scholar 

  8. Choi D, Kumta PN (2006) An alternative chemical route for the synthesis and thermal stability of chemically enriched hydroxyapatite. J Am Ceram Soc 89:444–449

    Article  Google Scholar 

  9. LeGeros RZ, LeGeros JP (2003) Calcium phosphate bioceramics: past, present and future. Key Eng Mater 240–242:3–10

    Article  Google Scholar 

  10. Suchanek W, Yoshimura M (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 13:94–117

    Article  Google Scholar 

  11. Horvath L, Smit I, Sikiric M, Filipovic-Vincekovic N (2000) Effect of cationic surfactant on the transformation of octocalcium phosphate. J Cryst Growth 219:91–97

    Article  Google Scholar 

  12. Service RF (2001) Coated nanofibers copy what’s bred in the bone: self-assembling materials. Science 294:1635–1637

    Article  Google Scholar 

  13. Lavine MS (2003) Biomaterials beneficial defects. Science 301:1632

    Google Scholar 

  14. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24:4609–4620

    Article  Google Scholar 

  15. Rosaa AL, Beloti MM, Noort RV (2003) Osteoblastic differentiation of cultured rat bone marrow cells on hydroxyapatite with different surface topography. Den Mater 19:768–772

    Article  Google Scholar 

  16. Kim S, Ryu HS, Shin H, Jung HS, Hong KS (2005) In situ observation of hydroxyapatite nanocrystal formation from amorphous calcium phosphate in calcium-rich solutions. Mater Chem Phys 91:500–506

    Article  Google Scholar 

  17. Hu J, Russell JJ, Ben-Nissan B, Vago R (2001) Production and analysis of hydroxyapatite derived from Australian corals via hydrothermal process. J Mat Sci Lett 20:85–87

    Article  Google Scholar 

  18. Wen HB, de Wijn JR, van Blitterswijk CA, de Groot K (1999) Incorporation of bovine serum albumin in calcium phosphate coating on titanium. J Biomed Mater Res 46:245–252

    Article  Google Scholar 

  19. Tadic D, Epple M (2003) Mechanically stable implants of synthetic bone mineral by cold isostatic pressing. Biomater 24:4565–4571

    Article  Google Scholar 

  20. Deb S, Giri J, Dasgupta S, Datta D, Bahadur D (2003) Synthesis and characterization of biocompatible hydroxyapatite coated ferrite. Bull Mater Sci 26:655–660

    Article  Google Scholar 

  21. Shi D, Jaing G, Wen X (1999) In vitro behavior of hydroxyapatite prepared by a thermal deposition method. In: Khor KA, Srivatsan TS, Wang M, Zhou W, Boey F (eds) Processing and fabrication of advanced materials VIII. World Scientific Publishing, Singapore, pp 117–124

    Google Scholar 

  22. Donadel K, Laranjeira MCM, Goncalves VL, Fa’vere VT, de Lima JC, Prates LHM (2005) Hydroxyapatites produced by wet-chemical methods. J Am Ceram Soc 88:2230–2235

    Article  Google Scholar 

  23. Pramanik S, Agarwal AK, Rai KN, Garg A (2007) Development of high strength hydroxyapatite by solid-state-sintering process. Ceram Int 33:419–426

    Article  Google Scholar 

  24. Young RA, Holcomb DW (1982) Variability of hydroxyapatite preparations. Calcif Tissue Int 34:S17–S32

    Google Scholar 

  25. Fowler BO (1974) Infrared studies of apatites: I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem 13:194–207

    Article  Google Scholar 

  26. Kivrak N, Tas AC (1998) Synthesis of calcium hydroxyapatite–tricalcium phosphate composite bioceramic powders and their sintering behavior. J Am Ceram Soc 81:2245–2252

    Article  Google Scholar 

  27. Mostafa NY (2005) Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mat Chem Phys 94:333–341

    Article  Google Scholar 

  28. Yoshimura M, Suda H, Okamoto K, Ioku K (1994) Hydrothermal synthesis of biocompatible whiskers. J Mater Sci 29:3399–3402

    Article  Google Scholar 

  29. Gómez-Morales J, Torrent-Burgués J, Boix T, Fraile J, Rodríguez-Clemente R (2001) Precipitation of stoichiometric hydroxyapatite by a continuous method. Cryst Res Technol 36:15–26

    Article  Google Scholar 

  30. Torrent-Burgues J, Rodriguez-Clemente R (2001) Hydroxyapatite precipitation in a semibatch process. Cryst Res Technol 36:1075–1082

    Article  Google Scholar 

  31. Lu H, Qu Z, Zhou Y (1998) Preparation and mechanical properties of dense polycrystalline hydroxyapatite through freeze-drying. J Mat Sci Mat Med 9:583–587

    Article  Google Scholar 

  32. Layrolle P, Ito A, Tateishi T (1998) Sol–gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J Am Ceram Soc 81:1421–1428

    Article  Google Scholar 

  33. Deptula A, Lada W, Olczak T, Borello A, Alvani C, Bartolomeo AD (1992) Preparation of spherical powders of hydroxyapatite by sol–gel process. J Non-Cryst Solids 147:537–541

    Article  Google Scholar 

  34. Kim BH, Jeong JH, Jeon YS, Jeon KO, Hwang KS (2007) Short communication: Hydroxyapatite layers prepared by sol–gel assisted electrostatic spray deposition. Ceram Int 33:112–119

    Google Scholar 

  35. Lerner E, Sarig S, Azoury R (1991) Enhanced maturation of hydroxyapatite from aqueous-solutions using microwave irradiation. J Mater Sci Mater Med 2:138–141

    Article  Google Scholar 

  36. Toriyama M, Ravaglioli A, Krajewski A, Celotti G, Piancastelli A (1996) Synthesis of hydroxyapatite based powders by mechanochemical method and their sintering. J Eur Ceram Soc 16:425–436

    Article  Google Scholar 

  37. Lim GK, Wang J, Ng SC, Gan LM (1996) Processing of fine hydroxyapatite powder via an inverse microemulsion route. Mater Lett 28:431–436

    Article  Google Scholar 

  38. Sato K, Suetsugu Y, Tanaka J, Ina S, Monma H (2000) The surface structure of hydroxyapatite single crystal and the accumulation of arachidic acid. J Colloid Interf Sci 224:23–27

    Article  Google Scholar 

  39. Fang Y, Agrawal DK, Roy DM, Brown PW (1992) Ultrasonically accelerated synthesis of hydroxyapatite. J Mater Res 7:2294–2298

    Article  Google Scholar 

  40. Torrent-Burgues J, Rodriguez-Clemente R (2001) Hydroxyapatite precipitation in a semibatch process. Cryst Res Technol 36:1075–1082

    Article  Google Scholar 

  41. Li HY, Chen YF, Xie YS (2004) Nanocomposites of cross-linking polyanhydrides and hydroxyapatite needles: mechanical and degradable properties. Mat Lett 58:2819–2823

    Article  Google Scholar 

  42. Bocciarelli D (1970) Morphology of crystallites in bone. Calcif Tissue Int 5:261–269

    Article  Google Scholar 

  43. Milev A, Kannangara GSK, Ben-Nissan B (2003) Morphological stability of hydroxyapatite precursor. Mat Lett 57:1960–1965

    Article  Google Scholar 

  44. Cheang P, Khor KA (1996) Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials 17:537–544

    Article  Google Scholar 

  45. Chow LC, Sun L, Hockey B (2004) Properties of nanostructured hydroxyapatite prepared by a spray drying technique. J Res Natl Inst Stand Technol 109:543–551

    Article  Google Scholar 

  46. Senna M, Isobe T Kanayama M (2003) Method for synthesis of hydroxyapatite, and hydroxyapatite complex and method for preparing the same. US Patent No. 6592989, July 15

  47. Font J, Muntasell J (2000) Effect of ball milling on semicrystalline bisphenol A polycarbonate. Mat Res Bull 35:681–687

    Article  Google Scholar 

  48. Calderin L, Stott MJ (2003) Electronic and crystallographic structure of apatites. Phys Rev B67:134106-1-7

    Google Scholar 

  49. Nakano T, Tokumara A, Umakoshi Y (2001) Control of hydroxyapatite crystallinity by mechanical grinding. J Mat Sci Mat Med 12:703–706

    Article  Google Scholar 

  50. Alexander LE (1969) X-ray diffraction methods in polymer science. Science & technology of materials, 1st edn. John Wiley & Sons, New York, p 582

    Google Scholar 

  51. Yamashita K, Owada H, Nakagawa H, Umegaki T, Kanazawa T (1986) Trivalent-cation-substituted calcium oxyhydroxyapatite. J Am Cera Soc 69:590–594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pramanik, S., Kar, K.K. Nanohydroxyapatite synthesized from calcium oxide and its characterization. Int J Adv Manuf Technol 66, 1181–1189 (2013). https://doi.org/10.1007/s00170-012-4401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4401-z

Keywords

Navigation