Skip to main content
Log in

Femtosecond laser-induced simultaneous surface texturing and crystallization of a-Si:H thin film: morphology study

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Hydrogenated amorphous silicon (a-Si:H) thin films have been considered for use in solar cell applications because of their significantly reduced cost compared with crystalline bulk silicon; however, their overall efficiency and stability are less than that of their bulk crystalline counterparts. Limited work has been performed on solving the efficiency and stability issues of a-Si:H simultaneously. Surface texturing and crystallization on a-Si:H thin film can be achieved through one-step femtosecond laser processing, which can potentially alleviate the disadvantages of a-Si:H in solar cell applications. In this study, submicrometer conical and pillar-shaped spikes are fabricated by irradiating a-Si:H thin films deposited on glass substrates with hundreds of 800 nm-wavelength, 130 fs-duration laser pulses in air, and water environments, respectively. The formation mechanisms for the surface spikes are discussed, and the differences in the surface feature characteristics are also presented and explained within the context of the different processing environments. The effect of laser processing on light absorption and crystallinity will be studied later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luque A, Hegedus S (2003) Handbook of photovoltaic science and engineering. Wiley, UK, Chapter 7-8

    Book  Google Scholar 

  2. Chopra KL, Paulson PD, Dutta V (2004) Thin-film solar cells: an overview. Prog Photovolt: Res Appl 12:69–92

    Article  Google Scholar 

  3. Kazmerski LL (2006) Solar photovoltaics R&D at the tipping point: a 2005 technology overview. J Electron Spectrosc Relat Phenom 150:105–135

    Article  Google Scholar 

  4. Miles RW, Hynes KM, Forbes I (2005) Photovoltaic solar cells: an overview of state-of-the-art cell development and environmental issues. Prog Cryst Growth Charact Mater 51:1–42

    Article  Google Scholar 

  5. Staebler DL, Wronski CR (1980) Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon. J Appl Phys 51(6)

  6. Martirosyan KhS, Hovhannisyan AS, Arouiounian VM (2007) Calculation of reflectance of porous silicon double-layer antireflection coating for silicon solar cells. Phys Status Solidi (C) 4(6):2103–2106

    Article  Google Scholar 

  7. Hylton JD, Burgers AR, Sinke WC (2004) Alkaline etching for reflectance reduction in multicrystalline silicon solar cells. J Electrochem Soc 151(6):G408–G427

    Article  Google Scholar 

  8. Crouch CH, Carey JE, Warrender JM, Aziz MJ, Mazur E, Genin FY (2004) Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl Phys Lett 84(11):1850–1852

    Article  Google Scholar 

  9. Nayak BK, Gupta MC (2007) Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films. Appl Phys A 89:663–666

    Article  Google Scholar 

  10. Yamamoto K et al (2004) A high efficiency thin film silicon solar cell and module. Sol Energy 77:939–949

    Article  Google Scholar 

  11. Zheng HY, Jiang ZW (2010) Femtosecond laser micromachining of silicon with an external electric field. J Micromech Microeng 20:017001

    Article  Google Scholar 

  12. Jiang L, Tsai HL (2003) Femtosecond laser ablation: challenges and opportunities. Proceeding of NSF Workshop on Research Needs in Thermal, Aspects of Material Removal, Stillwater, OK, 163–177

  13. Younkin R, Carey JE, Mazur E, Levinson JA, Friend CM (2003) Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses. J of Applied Physics 93(5):2626–2629

    Article  Google Scholar 

  14. Sheehy MA, Winston L, Carey JE, Friend CM, Mazur E (2005) Role of the background gas in the morphology and optical properties of laser-microstructured silicon. Chem Mater 17:3582–3586

    Article  Google Scholar 

  15. Shen MY, Crouch CH, Carey JE, Mazur E (2004) Femtosecond laser-induced formation of submicrometer spikes on silicon in water. Appl Phys Lett 85(23):5694–5696

    Article  Google Scholar 

  16. Daminelli G, Kruger J, Kautek W (2004) Femtosecond laser interaction with silicon under water confinement. Thin Solid Films 467:334–341

    Article  Google Scholar 

  17. Wang H, Kongsuwan P, Satoh G, Yao YL (2012) Femtosecond laser-induced simultaneous surface texturing and crystallization of a-Si:H thin film: absorption and crystallinity. J Manuf Sci Eng 134:031006

    Article  Google Scholar 

  18. Gattass R, Mazur E (2008) Femtosecond laser micromachining in transparent materials. Nat Photonics 2:219–225

    Article  Google Scholar 

  19. Sundaram SK, Mazur E (2002) Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater 1(4):217–224

    Article  Google Scholar 

  20. Tull BR, Carey JE, Mazur E, McDonald JP, Yalisove SM (2006) Silicon surface morphologies after femtosecond laser irradiation. MRS Bull 31(8):626–633

    Article  Google Scholar 

  21. Tan B, Venkatakrishnan K (2006) A femtosecond laser-induced periodical surface structure on crystalline silicon. J Micromech Microeng 16:1080–1085

    Article  Google Scholar 

  22. Goetzberger A, Knobloch J, Voss B (1998) Crystalline silicon solar cells. Wiley, Chichester, Chapter 2

    Google Scholar 

  23. Swanepoel R (1983) Determination of the thickness and optical constants of amorphous silicon. J Phys E Sci Instrum 16:1214–1222

    Article  Google Scholar 

  24. Shaaban ER (2008) Calculation of optical constant of amorphous germanium arsenoselenide wedge-shaped thin films from their shrunk transmittance and reflectance spectra. Phil Mag 88(5):781–794

    Article  Google Scholar 

  25. Sipe JE, Young JF, Preston JS, Van Driel HM (1983) Laser-induced periodic surface structure I Theory. Phys Rev B 27(2):1141–1154

    Article  Google Scholar 

  26. Her TH, Finlay RJ, Wu C, Mazur E (2000) Femtosecond laser-induced formation of spikes on silicon. Appl Phys A 70:383–385

    Article  Google Scholar 

  27. Wu C (2000) Femtosecond laser-gas-solid interactions. Dissertation, Harvard University

  28. Carey JE (2004) Femtosecond-laser microstructuring of silicon for novel optoelectronic devices. Dissertation, Harvard University

  29. Kuo CC, Yeh WC, Chen JB, Jeng JY (2006) Monitoring explosive crystallization phenomenon of amorphous silicon thin films during short pulse duration XeF excimer laser annealing using real-time optical diagnostic measurements. Thin Solid Films 515:1651–1657

    Article  Google Scholar 

  30. Elliq M, Fogarassy E, Stoquert JP, Fuchs C, Unamuno S, Preot B (1990) Pulsed excimer and Nd:YAG laser crystallization of a-Si:H—the specific role of hydrogen. Appl Surf Sci 46:378–382

    Article  Google Scholar 

  31. Kruger J, Kautek W (1995) Femtosecond-pulse laser processing of metallic and semiconducting thin films. SPIE 2403:436–447

    Article  Google Scholar 

  32. Kautek W, Rudolph P, Daminelli G, Kriger J (2005) Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructures. Appl Phys A 81:65–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Kongsuwan, P., Satoh, G. et al. Femtosecond laser-induced simultaneous surface texturing and crystallization of a-Si:H thin film: morphology study. Int J Adv Manuf Technol 65, 1691–1703 (2013). https://doi.org/10.1007/s00170-012-4291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4291-0

Keywords

Navigation