Skip to main content
Log in

Numerical modeling of friction stir welding process: a literature review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This survey presents a literature review on friction stir welding (FSW) modeling with a special focus on the heat generation due to the contact conditions between the FSW tool and the workpiece. The physical process is described and the main process parameters that are relevant to its modeling are highlighted. The contact conditions (sliding/sticking) are presented as well as an analytical model that allows estimating the associated heat generation. The modeling of the FSW process requires the knowledge of the heat loss mechanisms, which are discussed mainly considering the more commonly adopted formulations. Different approaches that have been used to investigate the material flow are presented and their advantages/drawbacks are discussed. A reliable FSW process modeling depends on the fine tuning of some process and material parameters. Usually, these parameters are achieved with base on experimental data. The numerical modeling of the FSW process can help to achieve such parameters with less effort and with economic advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1991) Friction stir welding. International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8

  2. Hamilton C, Dymek S, Sommers A (2008) A thermal model of friction stir welding in aluminum alloys. Int J Mach Tools Manuf 48(10):1120–1130. doi:10.1016/j.ijmachtools.2008.02.001

    Article  Google Scholar 

  3. Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12(1):143–157. doi:10.1088/0965-0393/12/1/013

    Article  Google Scholar 

  4. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding—process, weldment structure and properties. Prog Mater Sci 53(6):980–1023. doi:10.1016/j.pmatsci.2008.05.001

    Article  Google Scholar 

  5. Guerdoux S (2007) Numerical simulation of the friction stir welding process. Dissertation, Mines ParisTech

  6. Schmidt H, Hattel J (2008) Thermal modelling of friction stir welding. Scr Mater 58(5):332–337. doi:10.1016/j.scriptamat.2007.10.008

    Article  Google Scholar 

  7. Chen CM, Kovacevic R (2003) Finite element modeling of friction stir welding—thermal and thermomechanical analysis. Int J Mach Tools & Manuf 43(13):1319–1326. doi:10.1016/S0890-6955(03)00158-5

    Article  Google Scholar 

  8. Simar A, Lecomte-Beckers J, Pardoen T, Meester B (2006) Effect of boundary conditions and heat source distribution on temperature distribution in friction stir welding. Sci Tech Weld Join 11(2):170–177. doi:10.1179/174329306X84409

    Article  Google Scholar 

  9. Zhang Z (2008) Comparison of two contact models in the simulation of friction stir welding process. J Mater Sci 43(17):5867–5877. doi:10.1007/s10853-008-2865-x

    Article  Google Scholar 

  10. Riahi M, Nazari H (2011) Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. Int J Adv Manuf Technol 55:143–152. doi:10.1007/s00170-010-3038-z

    Article  Google Scholar 

  11. Mishra RS, Mahoney MW (2007) Friction stir welding and processing. Materials Park, OH, ASM International

    Google Scholar 

  12. Guerdoux S, Fourment L (2009) A 3D numerical simulation of different phases of friction stir welding. Model Simul Mater Sci Eng 17(7):1–32. doi:10.1088/0965-0393/17/7/075001

    Article  Google Scholar 

  13. Colegrove PA, Shercliff HR (2003) Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir welds. Sci Tech Weld Join 8(5):360–368. doi:10.1179/136217103225005534

    Article  Google Scholar 

  14. Jacquin D, de Meester B, Simar A, Deloison D, Montheillet F, Desrayaud C (2011) A simple Eulerian thermomechanical modeling of friction stir welding. J Mater Process Tech 211(1):57–65. doi:10.1016/j.jmatprotec.2010.08.016

    Article  Google Scholar 

  15. Menezes LF, Neto DM, Oliveira MC, Alves JL (2011) Improving computational performance through HPC techniques: case study using DD3IMP in-house code. The 14th International ESAFORM Conference on Material Forming, pp 1220–1225, Belfast, UK. doi:10.1063/1.3589683

  16. van der Stelt AA, Bor TC, Geijselaers HJM, Quak W, Akkerman R, Huétink J (2011) Comparison of ALE finite element method and adaptive smoothed finite element method for the numerical simulation of friction stir welding. The 14th International ESAFORM Conference on Material Forming, pp 1290–1295, Belfast, UK. doi:10.1063/1.3589694

  17. Assidi M, Fourment L (2009) Accurate 3D friction stir welding simulation tool based on friction model calibration. Int J Mater Form 2:327–330. doi:10.1007/s12289-009-0541-6

    Article  Google Scholar 

  18. Guerdoux S, Fourment L, Miles M, Sorensen C (2004) Numerical simulation of the friction stir welding process using both Lagrangian and arbitrary Lagrangian Eulerian formulations. Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, pp 1259–1264, Columbus, USA. doi:10.1063/1.1766702

  19. Zhu XK, Chao YJ (2004) Numerical simulation of transient temperature and residual stresses in friction stir welding of 304 L stainless steel. J Mater Process Tech 146:263–272. doi:10.1016/j.jmatprotec.2003.10.025

    Article  Google Scholar 

  20. Paun F, Azouzi A (2004) Thermomechanical history of a friction stir welded plate; influence of the mechanical loading on the residual stress distribution. NUMIFORM 2004:1197–1202. doi:10.1063/1.1766691

    Google Scholar 

  21. Santiago DH, Lombera G, Santiago U (2004) Numerical modeling of welded joints by the friction stir welding process. J Mater Res 7(4):569–574. doi:10.1590/S1516-14392004000400010

    Article  Google Scholar 

  22. Xu S, Deng X, Reynolds AP (2001) Finite element simulation of material flow in friction stir welding. Sci Tech Weld Join 6(3):191–193. doi:10.1179/136217101101538640

    Article  Google Scholar 

  23. Ulysse P (2002) Three-dimensional modeling of the friction stir-welding process. Int J Mach Tools Manuf 42(14):1549–1557. doi:10.1016/S0890-6955(02)00114-1

    Article  Google Scholar 

  24. Schmidt H, Hattel J (2005) Modelling heat flow around tool probe in friction stir welding. Sci Tech Weld Join 10(2):176–186. doi:10.1179/174329305X36070

    Article  Google Scholar 

  25. Chao YJ, Qi X (1999) Heat transfer and thermo-mechanical analysis of friction stir joining of AA6061-t6 plates. 1st International Symposium on Friction Stir Welding, California, USA

  26. Khandkar MZH, Khan JA, Reynolds AP (2003) Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Tech Weld Join 8(3):165–174. doi:10.1179/136217103225010943

    Article  Google Scholar 

  27. Frigaard O, Grong O, Midling OT (2001) A process model for friction stir welding of age hardening aluminum alloys. Metall Mater Trans 32(5):1189–1200. doi:10.1007/s11661-001-0128-4

    Article  Google Scholar 

  28. Zahedul M, Khandkar H, Khan JA (2001) Thermal modelling of overlap friction stir welding for Al-alloys. J Mater Process Manuf Sci 10:91–105

    Google Scholar 

  29. Tang W, Guo X, McClure JC, Murr LE, Nunes A (1998) Heat input and temperature distribution in friction stir welding. J Mater Process Manuf Sci 7:163–172

    Article  Google Scholar 

  30. Colegrove PA, Shercliff HR (2005) 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. J Mater Process Tech 169(2):320–327. doi:10.1016/j.jmatprotec.2005.03.015

    Article  Google Scholar 

  31. Rosakis P, Rosakis AJ, Ravichandran G, Hodowany J (2000) A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. Journal of the Mechanics and Physics of Solids 48(3):581–607. doi:10.1016/S0022-5096(99)00048-4

    Article  MathSciNet  MATH  Google Scholar 

  32. Simar A, Pardoen T, de Meester B (2007) Effect of rotational material flow on temperature distribution in friction stir welds. Sci Tech Weld Join 12(4):324–333. doi:10.1179/174329307X197584

    Article  Google Scholar 

  33. Nandan R, Roy GG, Debroy T (2006) Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall Materi Trans 37(4):1247–1259. doi:10.1007/s11661-006-1076-9

    Article  Google Scholar 

  34. Lammlein DH (2007) Friction stir welding of spheres, cylinders, and t-joints: design, experiment, modelling, and analysis. PhD Dissertation, Vanderbilt University

  35. Colegrove PA, Shercliff HR (2004) Development of Trivex friction stir welding tool. Part 2—three-dimensional flow modelling. Sci Tech Weld Join 9(4):352–361

    Article  Google Scholar 

  36. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78. doi:10.1016/j.mser.2005.07.001

    Article  MATH  Google Scholar 

  37. Colegrove PA, Shercliff HR (2004) 2-Dimensional CFD modeling of flow round profiled FSW tooling. Sci Tech Weld Join 9:483–492

    Article  Google Scholar 

  38. Schnieder JA, Nunes AC (2004) Characterization of plastic flow and resulting microtextures in a friction stir weld. Metall Mater Trans 35(4):777–783. doi:10.1007/s11663-004-0018-4

    Article  Google Scholar 

  39. Schmidt H, Hattel J (2005) A local model for the thermomechanical conditions in friction stir welding. Model Simul Mater Sci Eng 13:77–93. doi:10.1088/0965-0393/13/1/006

    Article  Google Scholar 

  40. Oliphant AH (2004) Numerical modeling of friction stir welding: a comparison of Alegra and Forge3. MSc thesis, Brigham Young University

  41. Schneider JA, Beshears R, Nunes AC (2006) Interfacial sticking and slipping in the friction stir welding process. Mater Sci Eng 435:297–304. doi:10.1016/j.msea.2006.07.082

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Mariano Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neto, D.M., Neto, P. Numerical modeling of friction stir welding process: a literature review. Int J Adv Manuf Technol 65, 115–126 (2013). https://doi.org/10.1007/s00170-012-4154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4154-8

Keywords

Navigation