Skip to main content
Log in

Surface quality prediction and processing parameter determination in electrochemical mechanical polishing of bearing rollers

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The surface quality of bearing rollers has great influence on the service performance of bearings. Electrochemical mechanical polishing (ECMP) is used to polish bearing rollers because it does not suffer from the disadvantages inherent in traditional bearing roller machining. However, predicting surface quality and determining processing parameters are difficult to accomplish because ECMP results are influenced by many factors. To overcome these problems, we develop an ECMP prediction model on the basis of least squares support vector machines with radial basis function. An orthogonal experiment is conducted to assess the effect of polishing parameters on surface roughness. Experiment results and predicted values show that ECMP is suitable for the machining of bearing rollers, with noticeable improvement in surface qualification. The mean absolute percent error (e MAPE) between the predicted and experimental values of surface roughness is 5.4%, and the root mean square error (e RMSE) is 6.5%. In addition, the e MAPE between the predicted and experimental values of current density is 4.8%, with an e RMSE of 6.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neagu-Ventzel S, Cioc S, Marinescu I (2006) A wear model and simulation of superfinishing process: analysis for the superfinishing of bearing rings. Wear 260(9–10):1061–1069. doi:10.1016/j.wear.2005.07.024

    Article  Google Scholar 

  2. Khalid F, Al-Raheem K, Roy A, Ramachandran KP, Harrison DK, Steven G (2009) Rolling element bearing faults diagnosis based on autocorrelation of optimized: wavelet de-noising technique. Int J Adv Manuf Technol 40(3–4):393–402. doi:10.1007/s00170-007-1330-3

    Google Scholar 

  3. Krzeminski-Freda H, Warda B (1996) Correction of the roller generators in spherical roller bearings. Wear 192(1–2):29–39. doi:10.1016/0043-1648(95)06739-6

    Article  Google Scholar 

  4. Wei Y, Qin Y, Balendra R, Jiang Q (2004) FE analysis of a novel roller form: a deep end-cavity roller for roller-type bearings. J Mater Process Technol 145(2):233–241. doi:10.1016/S0924-0136(03)00674-5

    Article  Google Scholar 

  5. Olofsson U (1997) An experimental investigation of wear and fatigue life reduction of boundary lubricated spherical roller thrust bearings. Tribol Int 30(9):685–692. doi:10.1016/S0301-679X(97)00042-X

    Article  Google Scholar 

  6. Selvaraj A, Marappan R (2011) Experimental analysis of factors influencing the cage slip in cylindrical roller bearing. Int J Adv Manuf Technol 53(5–8):635–644. doi:10.1007/s00170-010-2854-5

    Article  Google Scholar 

  7. Seo YJ (2011) Electrochemical-mechanical polishing application: monitoring of electrochemical copper removal from current–voltage characteristics in HNO3 electrolyte. Microelectron Eng 88(1):46–52. doi:10.1016/j.mee.2010.08.019

    Article  Google Scholar 

  8. Marinescu ID, Uhlmann E, Doi TK (2006) Handbook of lapping and polishing. CRC Press, Boca Raton

    Book  Google Scholar 

  9. Purcar M, Dorochenko A, Bortels L, Deconinck J, Bossche BV (2008) Advanced CAD integrated approach for 3D electrochemical machining simulations. J Mater Process Technol 203(1–3):58–71. doi:10.1016/j.jmatprotec.2007.09.082

    Article  Google Scholar 

  10. Kozak J, Chuchro M, Ruszaj A, Karbowski K (2000) The computer aided simulation of electrochemical process with universal spherical electrodes when machining sculptured surfaces. J Mater Process Technol 107(1–3):283–287. doi:10.1016/S0924-0136(00)00697-X

    Article  Google Scholar 

  11. Riggs JB, Muller RH, Tobias CW (1981) Prediction of work piece geometry in electrochemical cavity sinking. Electrochim Acta 26(8):961–969. doi:10.1016/0013-4686(81)85064-5

    Article  Google Scholar 

  12. Desilva AKM, Pajak PT, Harrison DK, Mcgeough JA (2004) Modelling and experimental investigation of laser assisted jet electrochemical machining. CIRP Ann Manuf Technol 53(1):179–182. doi:10.1016/S0007-8506(07)60673-8

    Article  Google Scholar 

  13. Zhang H, Xu J (2010) Modeling and experimental investigation of laser drilling with jet electrochemical machining. Chin J Aeronaut 23(4):454–460. doi:10.1016/S1000-9361(09)60241-7

    Article  Google Scholar 

  14. Parthiban T, Ravi R, Kalaiselvi N (2007) Exploration of artificial neural network [ANN] to predict the electrochemical characteristics of lithium-ion cells. Electrochim Acta 53(4):1877–1882. doi:10.1016/j.electacta.2007.08.049

    Article  Google Scholar 

  15. Pang GB, Xu WJ, Zhai XB, Zhou JJ (2004) Forecast and control of anode shape in electrochemical machining using neural network. Lect Notes Comput Sci 3174:262–268. doi:10.1007/978-3-540-28648-6_41

    Article  Google Scholar 

  16. Vapnik VN (2000) The nature of statistical learning theory. Springer, New York

    MATH  Google Scholar 

  17. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293. doi:10.1023/A:1018628609742

    Article  MathSciNet  Google Scholar 

  18. Suykens JAK, Gestel TV, Brabanter JD, Moor BD, Vandewalle J (2002) Least squares support vector machines. World Scientific Publishing, River Edge, New Jersey

    Book  MATH  Google Scholar 

  19. Vong CM, Wong PK, Li YP (2006) Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference. Eng Appl Artif Intell 19(3):277–287. doi:10.1016/j.engappai.2005.09.001

    Article  Google Scholar 

  20. Wei CH, Pai PF (2006) Predicting engine reliability by support vector machines. Int J Adv Manuf Technol 28(1–2):154–161. doi:10.1007/s00170-004-2340-z

    Google Scholar 

  21. Gencoglu MT, Uyar M (2009) Prediction of flashover voltage of insulators using least squares support vector machines. Expert Syst Appl 36(7):10789–10798. doi:10.1016/j.eswa.2009.02.021

    Article  Google Scholar 

  22. Guo ZW, Bai GC (2009) Application of least squares support vector machine for regression to reliability analysis. Chin J Aeronaut 22(2):160–166. doi:10.1016/S1000-9361(08)60082-5

    Article  Google Scholar 

  23. Glotsos D, Kalatzis I, Spyridonos P, Kostopoulos S, Daskalakis A, Athanasiadis E, Ravazoula P, Nikiforidis G, Cavouras D (2008) Improving accuracy in astrocytomas grading by integrating a robust least squares mapping driven support vector machine classifier into a two level grade classification scheme. Comput Methods Prog Biomed 90(3):251–261. doi:10.1016/j.cmpb.2008.01.006

    Article  Google Scholar 

  24. Ramesh R, Ravi Kumar K, Anil G (2009) Automated intelligent manufacturing system for surface finish control in CNC milling using support vector machines. Int J Adv Manuf Technol 42(11–12):1103–1117. doi:10.1007/s00170-008-1676-1

    Article  Google Scholar 

  25. Li X, Cao GY, Zhu XJ (2006) Modeling and control of PEMFC based on least squares support vector machines. Energ Convers Manag 47(7–8):1032–1050. doi:10.1016/j.enconman.2005.04.002

    Article  Google Scholar 

  26. Pyle D (1999) Data preparation for data mining. Academic, San Diego

    Google Scholar 

  27. Patil NS, Shelokar PS, Jayaraman VK, Kulkarni BD (2005) Regression models using pattern search assisted least square support vector machines. Chem Eng Res Des 83(8):1030–1037. doi:10.1205/cherd.03144

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenji Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Wei, Z., Sun, J. et al. Surface quality prediction and processing parameter determination in electrochemical mechanical polishing of bearing rollers. Int J Adv Manuf Technol 63, 129–136 (2012). https://doi.org/10.1007/s00170-011-3891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3891-4

Keywords

Navigation