Skip to main content
Log in

Direct tool path regeneration for physical object modification from digitized points in reverse engineering

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

To reuse the tool paths in tool path regeneration for physical object modification in reverse engineering, this paper presented a novel CL tool path regeneration algorithm based on the CL tool path generated from the measured data points. When a physical part captured is modified, the new tool paths for the modified part can be regenerated efficiently by only calculating the affected CL tool paths on the modified region. With this strategy, if a measured physical part has been modified and the CL tool paths were generated directly from its corresponding digitized points, the affected CL tool paths are identified first; then, new CL tool paths are regenerated and used to replace the affected CL tool paths for a given machining accuracy δ. The tool paths not affected are maintained in the new NC-codes. For the method, only the tool paths for the modified regions need to be regenerated; thus, the tool path, which combines the original and modified tool paths, can be regenerated efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Milroy M, Bradley C, Vickers G, Weirll J (1995) A G1 continuity of B-spline surfaces patches in reverse engineering. Comput Aided Des 27(6):471–478

    Article  MATH  Google Scholar 

  2. Yin Z, Jiang S (2003) Automatic segmentation and approximation of digitized data for reverse engineering. Int J Prod Res 41(13):3045–3058

    Article  MATH  Google Scholar 

  3. Fitzgibbon AW, Eggert DW, Fisher RB (1997) High-level CAD model acquisition from range image. Comput Aided Des 29(4):321–330

    Article  Google Scholar 

  4. Varady T, Martin RR, Cox J (1997) Reverse engineering of geometric models—an introduction. CAD 29(4):255–268

    Google Scholar 

  5. Chui KL, Yu KM, Lee TC (2002) Direct tool-path generation from massive point input. Proc Inst Mech Eng, Part B: J Eng Manuf 216(2):199–206

    Google Scholar 

  6. Lin AC, Liu HT (1998) Automatic generation of NC cutter path from massive data points. Comput Aided Des 30(1):77–90

    Article  Google Scholar 

  7. Park SC, Chung YC (2003) Tool path generation from measured data. Comput Aided Des 35:467–475

    Article  Google Scholar 

  8. Chui KL, Yu KM, Lee TC (2002) Direct tool-path generation from massive point input. Proc Inst Mech Eng, Part B: J Eng Manuf 216(2):199–206

    Google Scholar 

  9. Yin Z (2004) Adaptive tool path generation from measured data. Proc Inst Mech Eng, Part B: J Eng Manuf 218(1):103–111

    Google Scholar 

  10. Zhang LP, Fuh JYH, Nee AYC (2003) Tool path regeneration for mold design modification. Comput Aided Des 35(9):813–823

    Article  Google Scholar 

  11. Milroy M, Bradley C, Vickers G (1997) Segmentation of a warp-around model using an active contour. Comput Aided Des 29(9):299–320

    Article  Google Scholar 

  12. Piegl L, Tiller W (1995) The NURBS book. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  13. Lee Y-S, Chang T-C (1995) 2-phase approach to global tool interference avoidance in 5-axis machining. Comput Aided Des 27(10):129–715

    Google Scholar 

  14. Glaeser G, Wallner J, Pottmann H (1999) Collision-free 3-axis milling and selection of cutting tools. Comput Aided Des 31(3):215–233

    Article  Google Scholar 

  15. Yang DCH, Han Z (1999) Interference detection and optimal tool selection in 3-axis NC machining of free-form surfaces. Comput Aided Des 31(5):303–315

    Article  MATH  Google Scholar 

  16. Seiler A, Balendran V, Sivayoganathan K (1997) Tool interference detection and avoidance based on offset nets. Int J Mach Tools Manuf 37(5):717–722

    Article  Google Scholar 

  17. Ho S, Sarma S, Adachi Y (2001) Real-time interference analysis between a tool and an environment. Comput Aided Des 33(13):935–947

    Article  Google Scholar 

  18. Ding XM, Fuh JYH, Lee KS (2001) Interference detection for 3-axis mold machining. Comput Aided Des 33(8):561–569

    Article  Google Scholar 

  19. Kim KI, Kim K (1995) A new machine strategy for sculpture surface using offset surface. Int J Prod Res 33(6):1683–1697

    Article  MATH  Google Scholar 

  20. Farouki RT (1986) The approximation of non-degenerate offset surfaces. Comput Aided Geom Des 3(1):15–43

    Article  MATH  MathSciNet  Google Scholar 

  21. Tiller W, Hanson EG (1984) Offset a two-dimensional profiles. IEEE Comput Graph Appl 4(9):61–69

    Article  Google Scholar 

  22. Hoschek J (1985) Offset curves in the plane. Comput Aided Des 17(2):77–82

    Article  Google Scholar 

  23. Aomura S, Uehara T (1990) Self-intersection of an offset surface. Comput Aided Des 22(7):417–422

    Article  MATH  Google Scholar 

  24. Barnhill RE, Farin G, Jordan M, Piper BR (1987) Surface/surface intersection. Comput Aided Geom Des 4(1):3–16

    Article  MATH  MathSciNet  Google Scholar 

  25. Barnhill RE, Kersey SN (1990) A marching method for parametric surface/surface intersection. Comput Aided Geom Des 7(3):257–280

    Article  MATH  MathSciNet  Google Scholar 

  26. Choi BK, Lee CS, Hwang JS, Jun CS (1988) Compound surface modeling and machining. Comput Aided Des 20(3):127–136

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y.H., Yin, Z.W. Direct tool path regeneration for physical object modification from digitized points in reverse engineering. Int J Adv Manuf Technol 33, 1204–1211 (2007). https://doi.org/10.1007/s00170-006-0562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-006-0562-y

Keywords

Navigation