Skip to main content

Advertisement

Log in

The postoperative shorter meniscal width was the risk factor of lateral meniscal extrusion in the middle portion for juvenile and adolescent knees with discoid lateral meniscus

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

A Correction to this article was published on 20 August 2020

This article has been updated

Abstract

Purpose

The study aim was to clarify the risk factors for postoperative meniscal extrusion in a middle portion in juvenile and adolescent knees with DLM.

Methods

Forty-six patients with symptomatic DLM who underwent surgery were retrospectively assessed. Inclusion criteria were set as follows: (1) aged ≤ 17 years with an open growth plate, (2) preoperative and postoperative follow-up MRI, and 3) reshaping surgeries comprising of saucerization alone or with meniscal repair. Average (95%CI) age during surgery, body mass index (BMI), and follow-up duration were 12 years (11–13), 19.9 kg/m2 (18.7–21.0), and 26.4 months (19.5–33.3), respectively. Age, sex, sports activities, BMI, postoperative rehabilitation, preoperative shift of DLM by Ahn’s classification, surgical procedures, postoperative meniscal width of all portions, and meniscal healing were analyzed.

Results

Postoperatively, eight knees in the no-extrusion group and 38 knees in the extrusion group were observed. In the univariate logistic regression analysis, shorter meniscal width in a middle portion (OR = 1.580, p = 0.006), shorter minimum width of all portions (OR = 1.674, p = 0.024), and meniscal healing (OR = 0.160, p = 0.028) were the risk factors for meniscal extrusion in a middle portion. Multiple logistic regression analysis demonstrated that shorter meniscal width in a middle portion was the risk factor.

Conclusions

As the clinical relevance, to prevent postoperative meniscal extrusion of the middle portion with DLM, surgeons are necessary to pay attention to maintain the adequate meniscal width for juvenile and adolescent knees.

Level of evidence

III

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Ahn JH, Lee YS, Ha HC, Shim JS, Lim KS (2009) A novel magnetic resonance imaging classification of discoid lateral meniscus based on peripheral attachment. Am J Sports Med 37:1564–1569

    Article  Google Scholar 

  2. Ahn JH, Kim KI, Wang JH, Jeon JW, Cho YC, Lee SH (2015) Long-term results of arthroscopic reshaping for symptomatic discoid lateral meniscus in children. Arthroscopy 31:867–873

    Article  Google Scholar 

  3. Atay OA, Pekmezci M, Doral MN, Sargon MF, Ayvaz M, Johnson DL (2007) Discoid meniscus: an ultrastructural study with transmission electron microscopy. Am J Sports Med 35:475–478

    Article  Google Scholar 

  4. Bisicchia S, Botti F, Tudisco C (2018) Discoid lateral meniscus in children and adolescents: a histological study. J Exp Orthop 5(1):39. https://doi.org/10.1186/s40634-018-0153-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carabajal M, Allende GJ, Masquijo JJ (2020) Mid-term results of arthroscopic remodeling combined with peripheral repair in children with unstable discoid meniscus. Rev Esp Cir Ortop Traumatol 64:206–212

    CAS  Google Scholar 

  6. Chiba D, Maeda S, Sasaki E, Ota S, Nakaji S, Tsuda E, Ishibashi Y (2017) Meniscal extrusion seen on ultrasonography affects the development of radiographic knee osteoarthritis: a 3-year prospective cohort study. Clin Rheumatol 36:2557–2564

    Article  Google Scholar 

  7. Clark CR, Ogden J (1983) Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Jt Surg Am 65:538–547

    Article  CAS  Google Scholar 

  8. Emmanuel K, Quinn E, Niu J, Guermazi A, Roemer F, Wirth W, Eckstein F, Felson D (2016) Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis—data from the osteoarthritis initiative. Osteoarthr Cartil 24:262–269

    Article  CAS  Google Scholar 

  9. Goto N, Okazaki K, Akiyama T, Akasaki Y, Mizu-Uchi H, Hamai S, Nakamura S, Nakashima Y (2019) Alignment factors affecting the medial meniscus extrusion increases the risk of osteoarthritis development. Knee Surg Sports Traumatol Arthrosc 27:2617–2623

    Article  Google Scholar 

  10. Hada S, Ishijima M, Kaneko H, Kinoshita M, Liu L, Sadatsuki R, Futami I, Yusup A, Takamura T, Arita H, Shiozawa J, Aoki T, Takazawa Y, Ikeda H, Aoki S, Kurosawa H, Okada Y, Kaneko K (2017) Association of medial meniscal extrusion with medial tibial osteophyte distance detected by T2 mapping MRI in patients with early-stage knee osteoarthritis. Arthritis Res Ther 19:201

    Article  Google Scholar 

  11. Hunter DJ, Zhang YQ, Niu JB, Tu X, Amin S, ClancyM GA, GrigorianM GD, Felson DT (2006) The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum 54:795–801

    Article  CAS  Google Scholar 

  12. Ishii Y, Ishikawa M, Kurumadani H, Hayashi S, Nakamae A, Nakasa T, Sumida Y, Tsuyuguchi Y, Kanemitsu M, Deie M, Adachi N, Sunagawa T (2019) Increase in medial meniscal extrusion in the weight-bearing position observed on ultrasonography correlates with lateral thrust in early-stage knee osteoarthritis. J Orthop Sci. https://doi.org/10.1016/j.jos.2019.07.003

    Article  PubMed  Google Scholar 

  13. Katano H, Koga H, Ozeki N, Otabe K, Mizuno M, Tomita M, Muneta T, Sekiya I (2018) Trends in isolated meniscus repair and meniscectomy in Japan, 2011–2016. J Orthop Sci 23:676–681

    Article  Google Scholar 

  14. Kawahara Y, Uetani M, Fuchi K, Eguchi H, Hayashi K (1999) MR assessment of movement and morphologic change in the menisci during knee flexion. Acta Radiol 40:610–614

    Article  CAS  Google Scholar 

  15. Kocher MS, Logan CA, Kramer DE (2017) Discoid lateral meniscus in children: diagnosis, management, and outcomes. J Am Acad Orthop Surg 25:736–743

    Article  Google Scholar 

  16. Koga H, Muneta T, Watanabe T, Mochizuki T, Horie M, Nakamura T, Otabe K, Nakagawa Y, Sekiya I (2016) Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 32:2000–2008

    Article  Google Scholar 

  17. Markes AR, Hodax JD, Ma CB (2020) Meniscus form and function. Clin Sports Med 39:1–12

    Article  Google Scholar 

  18. Matsuo T, Kinugasa K, Sakata K, Ohori T, Mae T, Hamada M (2017) Postoperative deformation and extrusion of the discoid lateral meniscus following a partial meniscectomy with repair. Knee Surg Sports Traumatol Arthrosc 25:390–396

    Article  Google Scholar 

  19. Mochizuki T, Tanifuji O, Sato T, Watanabe S, Endo N (2019) Predictive factors for developing osteochondritis dissecans after surgery for discoid lateral meniscus are younger age and shorter meniscal width. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05750-6

    Article  PubMed  Google Scholar 

  20. Nakayama H, Iseki T, Kambara S, Yoshiya S (2016) Analysis of risk factors for poor prognosis in conservatively managed juvenileosteochondritis dissecans of the lateral femoral condyle. Knee 23:950–954

    Article  Google Scholar 

  21. Ng YH, Tan SHS, Lim AKS, Hui JH (2020) Meniscoplasty leads to good mid-term to long-term outcomes for children and adolescents with discoid lateral meniscus. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-05929-2

    Article  PubMed  Google Scholar 

  22. Ohnishi Y, Nakashima H, Suzuki H, Nakamura E, Sakai A, Uchida S (2018) Arthroscopic treatment for symptomatic lateral discoid meniscus: the effects of different ages, groups and procedures on surgical outcomes. Knee 25:1083–1090

    Article  Google Scholar 

  23. Papadopoulos A, Kirkos JM, Kapetanos GA (2009) Histomorphologic study of discoid meniscus. Arthroscopy 25:262–268

    Article  Google Scholar 

  24. Sabbag OD, Hevesi M, Sanders TL, Camp CL, Dahm DL, Levy BA, Stuart MJ, Krych AJ (2019) High rate of recurrent meniscal tear and lateral compartment osteoarthritis in patients treated for symptomatic lateral discoid meniscus: a population-based study. Orthop J Sports Med 7(7):2325967119856284. https://doi.org/10.1177/2325967119856284

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sasaki N, Tsuda E, Yamamoto Y, Maeda S, Ishibashi Y (2014) Severe valgus knee deformity caused by chondronecrosis after using a radiofrequency device. J Orthop Sci 19:1046–1050

    Article  Google Scholar 

  26. Szarmach A, Luczkiewicz P, Skotarczak M, Kaszubowski M, Winklewski PJ, Dzierzanowski J, Piskunowicz M, Szurowska E, Baczkowski B (2016) Assessment of the relationship between the shape of the lateral meniscus and the risk of extrusion based on MRI examination of the knee joint. PLoS ONE 11:e0159156

    Article  Google Scholar 

  27. Takigami J, Hashimoto Y, Tomihara T, Yamasaki S, Tamai K, Kondo K, Nakamura H (2018) Predictive factors for osteochondritis dissecans of the lateral femoral condyle concurrent with a discoid lateral meniscus. Knee Surg Sports Traumatol Arthrosc 26:799–805

    Article  Google Scholar 

  28. Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat Res 109:184–192

    Article  Google Scholar 

  29. Wei X, Räsänen T, Messner K (1998) Maturation-related compressive properties of rabbit knee articular cartilage and volume fraction of subchondral tissue. Osteoarthr Cartil 6:400–409

    Article  CAS  Google Scholar 

  30. Yamasaki S, Hashimoto Y, Takigami J, Terai S, Takahashi S, Nakamura H (2017) Risk factors associated with knee joint degeneration after arthroscopic reshaping for juvenile discoid lateral meniscus. Am J Sports Med 45:570–577

    Article  Google Scholar 

  31. Yonetani Y, Nakamura N, Natsuume T, Shiozaki Y, Tanaka Y, Horibe S (2010) Histological evaluation of juvenile osteochondritis dissecans of the knee: a case series. Knee Surg Sports Traumatol Arthrosc 18:723–730

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all doctors in Niigata University and the affiliated hospitals: Drs. Watanabe K, Yamamoto N, Omori G, Shiozaki H, Segawa H, Matsueda M, Yamagiwa H, Higano Y, Ariumi A, Mera H, Murayama T, Fujii T, Koga H, Takagi S, Katsumi R, Muraoka O, Yamanaka K, Hokari S, Tomiyama Y, Hosono Y, Otani K, Soeno T, Hijikata H, Sasage Y, Maeda K, Someya K, and Koga Y.

Funding

No external funding was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoharu Mochizuki.

Ethics declarations

Conflict of interest

The authors did not receive and will not receive any benefits or funding from any commercial party related directly or indirectly to the subject of this article.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochizuki, T., Tanifuji, O., Watanabe, S. et al. The postoperative shorter meniscal width was the risk factor of lateral meniscal extrusion in the middle portion for juvenile and adolescent knees with discoid lateral meniscus. Knee Surg Sports Traumatol Arthrosc 29, 2857–2866 (2021). https://doi.org/10.1007/s00167-020-06188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-06188-x

Keywords

Navigation