Skip to main content

Advertisement

Log in

Cartilage survival of the knee strongly depends on malalignment: a survival analysis from the Osteoarthritis Initiative (OAI)

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Progression of osteoarthritis over time is poorly understood. The aim of the current study was to establish a timeline of “cartilage survival rate” per subregion of the knee in relation to mechanical alignment of the lower extremity. The study hypothesized that there are differences in progression of osteoarthritis between varus, valgus and physiologic lower extremity alignment.

Methods

Based on hip-knee-ankle standing radiographs at baseline, 234 knees had physiologic (180° ± 3°, mean 179.7°), 158 knees had varus (< 177°; mean 174.5°) and 66 knees valgus (> 183°; mean 185.2°) alignment (consecutive knees of the OAI “Index Knee” group, n = 458; mean age 61.7; 264 females). The Osteoarthritis Initiative (OAI; a multi-center, longitudinal, prospective observational study of knee osteoarthritis [30] using MRIs) defines progressive OA as a mean decrease of cartilage thickness of 136 µm/year and a mean decrease of cartilage volume by 5% over 1 year (DESS sequences, MRI). A Kaplan–Meier curve was generated for osteoarthritis progression based on OAI criteria.

Results

Osteoarthritis progression based on volume decrease of 5% in varus knees occurred after 30.8 months (medial femoral condyle), after 37 months (medial tibia), after 42.9 months (lateral femoral condyle) and 43.4 months (lateral tibia), respectively. In a valgus alignment progression was detectable after 31.5 months (lateral tibia), after 36.2 months (lateral femoral condyle), after 40.4 months (medial femoral condyle) and 43.8 months (medial tibia), respectively. The physiological alignment shows a progression after 37.8 months (medial femoral condyle), after 41.6 months (lateral tibia), after 41.7 months (medial tibia) and after 43 months (lateral femoral condyle), respectively.

Conclusion

Based on data from the OAI, the rate and location (subregion) of osteoarthritis progression of the knee is strongly associated with lower extremity mechanical alignment.

Level of evidence

Level I (prognostic study).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Altman RD, Brandt K, Hochberg M, Moskowitz R (1996) Design and conduct of clinical trials in patients with osteoarthritis: recommendations from a task force of the Osteoarthritis Research Society. Osteoarthr Cartil 4:217–243

    Article  CAS  Google Scholar 

  2. Annual Report 2014. The Swedish Knee Arthroplasty Register. http://www.myknee.se/en/. Accessed 6 Jan 2019

  3. Annual Report 2014. The Australian Orthopaedic Association National Joint Replacement Registry. https://aoanjrr.sahmri.com/annual-reports-2014. Accessed 6 Jan 2019

  4. Beckwee D, Vaes P, Shahabpour M, Muyldermans R, Rommers N, Bautmans I (2015) The influence of joint loading on bone marrow lesions in the knee: a systematic review with meta-analysis. Am J Sports Med 43(12):3093–3107

    Article  Google Scholar 

  5. Biswal S, Hastie T, Andriacchi TP, Bergman GA, Dillingham MF, Lang P (2002) Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum 46(11):2884–2892

    Article  Google Scholar 

  6. Cooke TD, Harrison L, Khan B, Scudamore A, Chaudhary MA (2002) Analysis of limb alignment in the pathogenesis of osteoarthritis: a comparison of Saudi Arabian and Canadian cases. Rheumatol Int 22(4):160–164

    Article  Google Scholar 

  7. Cooke TD, Sled EA, Scudamore RA (2007) Frontal plane knee alignment: a call for standardized measurement. J Rheumatol 34(9):1796–1801

    PubMed  Google Scholar 

  8. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res (416):37–57

  9. Dennis DA, Mahfouz MR, Komistek RD, Hoff W (2005) In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 38(2):241–253

    Article  Google Scholar 

  10. Eckstein F, Ateshian G, Burgkart R, Burstein D, Cicuttini F, Dardzinski B, Gray M, Link TM, Majumdar S, Mosher T, Peterfy C, Totterman S, Waterton J, Winalski CS, Felson D (2006) Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthr Cartil 14(10):974–983

    Article  CAS  Google Scholar 

  11. Eckstein F, Kwoh CK, Link TM, investigators OAI (2014) Imaging research results from the Osteoarthritis Initiative (OAI): a review and lessons learned 10 years after start of enrolment. Ann Rheum Dis 73(7):1289–1300

    Article  Google Scholar 

  12. Eckstein F, Le Graverand MH (2015) Plain radiography or magnetic resonance imaging (MRI): which is better in assessing outcome in clinical trials of disease-modifying osteoarthritis drugs? Summary of a debate held at the World Congress of Osteoarthritis 2014. Semin Arthritis Rheum 45(3):251–256

    Article  Google Scholar 

  13. Eckstein F, Maschek S, Wirt W et al (2009) One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort—association with sex, body mass index, symptoms, and radiographic OA status. Ann Rheum Dis 68(5):674–679

    Article  CAS  Google Scholar 

  14. Eckstein F, Nevitt M, Gimona A, Picha K, Lee JH, Davies RY, Dreher D, Benichou O, Le Graverand MP, Hudelmaier M, Maschek S, Wirth W, Osteoarthritis Initiative Investigators G (2011) Rates of change and sensitivity to change in cartilage morphology in healthy knees and in knees with mild, moderate, and end-stage radiographic osteoarthritis: results from 831 participants from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 63(3):311–319

    Google Scholar 

  15. Eckstein F, Wirth W, Hudelmaier M, Stein V, Lengfelder V, Cahue S, Marshall M, Prasad P, Sharma L (2008) Patterns of femorotibial cartilage loss in knees with neutral, varus, and valgus alignment. Arthritis Rheum 59(11):1563–1570

    Article  Google Scholar 

  16. Everhart JS, Abouljoud MM, Poland SG, Flanigan DC (2018) Medial compartment defects progress at a more rapid rate than lateral cartilage defects in older adults with minimal to moderate knee osteoarthritis (OA): data from the OA initiative. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-5202-1

    Article  PubMed  Google Scholar 

  17. Felson DT, Niu J, Gross KD, Englund M, Sharma L, Cooke TD, Guermazi A, Roemer FW, Segal N, Goggins JM, Lewis CE, Eaton C, Nevitt MC (2013) Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative. Arthritis Rheum 65(2):355–362

    Article  Google Scholar 

  18. Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ (2015) Osteoarthritis. Lancet 386(9991):376–387

    Article  CAS  Google Scholar 

  19. Harman MK, Markovich GD, Banks SA, Hodge WA (1998) Wear patterns on tibial plateaus from varus and valgus osteoarthritic knees. Clin Orthop Relat Res 352:149–158

    Google Scholar 

  20. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP, Guermazi A, Genant H, Gale D, Felson DT (2006) Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum 54(5):1529–1535

    Article  Google Scholar 

  21. Khamaisy S, Nam D, Thein R, Rivkin G, Liebergall M, Pearle A (2014) Limb alignment, subluxation, and bone density relationship in the osteoarthritic varus knee. J Knee Surg 28(3):207–212

    Article  Google Scholar 

  22. Khamaisy S, Zuiderbaan HA, Thein R, Nawabi DH, Joskowicz L, Pearle AD (2014) Coronal tibiofemoral subluxation: a new measurement method. Knee 21(6):1069–1071

    Article  Google Scholar 

  23. LaValley MP, McAlindon TE, Chaisson CE, Levy D, Felson DT (2001) The validity of different definitions of radiographic worsening for longitudinal studies of knee osteoarthritis. J Clin Epidemiol 54(1):30–39

    Article  CAS  Google Scholar 

  24. Lim YZ, Wang Y, Wluka AE, Davies-Tuck ML, Teichtahl A, Urquhart DM, Cicuttini FM (2013) Are biomechanical factors, meniscal pathology, and physical activity risk factors for bone marrow lesions at the knee? A systematic review. Semin Arthritis Rheum 43(2):187–194

    Article  Google Scholar 

  25. March L, Smith EU, Hoy DG, Cross MJ, Sanchez-Riera L, Blyth F, Buchbinder R, Vos T, Woolf AD (2014) Burden of disability due to musculoskeletal (MSK) disorders. Best Pract Res Clin Rheumatol 28(3):353–366

    Article  Google Scholar 

  26. Maschek S, Wirth W, Ladel C, Hellio Le Graverand MP, Eckstein F (2014) Rates and sensitivity of knee cartilage thickness loss in specific central reading radiographic strata from the Osteoarthritis Initiative. Osteoarthr Cartil 22(10):1550–1553

    Article  CAS  Google Scholar 

  27. Moyer R, Wirth W, Duryea J, Eckstein F (2016) Anatomical alignment, but not goniometry, predicts femorotibial cartilage loss as well as mechanical alignment: data from the Osteoarthritis Initiative. Osteoarthr Cartil 24(2):254–261

    Article  CAS  Google Scholar 

  28. Moyer R, Wirth W, Eckstein F (2017) Longitudinal changes in magnetic resonance imaging-based measures of femorotibial cartilage thickness as a function of alignment and obesity: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 69(7):959–965

    Article  CAS  Google Scholar 

  29. Mullaji AB, Marawar SV, Luthra M (2008) Tibial articular cartilage wear in varus osteoarthritic knees: correlation with anterior cruciate ligament integrity and severity of deformity. J Arthroplasty 23(1):128–135

    Article  Google Scholar 

  30. Osteoarthritis-Initiative (2015) http://oai.epi-ucsf.org/datarelease/StudyOverview.asp. Accessed 12 Dec 2015

  31. Osteoarthritis-Initiative (2015) https://oai.epi-ucsf.org/datarelease/ImageAssessments.asp. Accessed 12 Dec 2015

  32. Rajgopal A, Noble PC, Vasdev A, Ismaily SK, Sawant A, Dahiya V (2015) Wear patterns in knee articular surfaces in varus deformity. J Arthroplasty 30(11):2012–2016

    Article  Google Scholar 

  33. Raju PK, Kini SG, Verma A (2012) Wear patterns of tibiofemoral articulation in osteoarthritic knees: analysis and review of literature. Arch Orthop Trauma Surg 132(9):1267–1271

    Article  CAS  Google Scholar 

  34. Sharma L, Chmiel JS, Almagor O, Felson D, Guermazi A, Roemer F, Lewis CE, Segal N, Torner J, Cooke TD, Hietpas J, Lynch J, Nevitt M (2013) The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: the MOST study. Ann Rheum Dis 72(2):235–240

    Article  Google Scholar 

  35. Sharma L, Eckstein F, Song J, Guermazi A, Prasad P, Kapoor D, Cahue S, Marshall M, Hudelmaier M, Dunlop D (2008) Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum 58(6):1716–1726

    Article  Google Scholar 

  36. Sharma L, Song J, Felson D, Cahue S, Shamiyeh E, Dunlop D (2001) The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286:188–195

    Article  CAS  Google Scholar 

  37. Silverwood V, Blagojevic-Bucknall M, Jinks C, Jordan JL, Protheroe J, Jordan KP (2015) Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthr Cartil 23(4):507–515

    Article  CAS  Google Scholar 

  38. Weidow J, Pak J, Kärrholm J (2002) Different patterns of cartilage wear in medial and lateral gonarthrosis. Acta Orthop Scand 73:326–329

    Article  Google Scholar 

  39. White SH, Ludkowski PF, Goodfellow JW (1991) Anteromedial osteoarthritis of the knee. J Bone Jt Surg Br 73:582–586

    Article  CAS  Google Scholar 

  40. Wirth W, Duryea J, Hellio Le Graverand MP, John MR, Nevitt M, Buck RJ, Eckstein F, Group OAII (2013) Direct comparison of fixed flexion, radiography and MRI in knee osteoarthritis: responsiveness data from the Osteoarthritis Initiative. Osteoarthr Cartil 21(1):117–125

    Article  CAS  Google Scholar 

  41. Wirth W, Eckstein F (2008) A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging. IEEE Trans Med Imaging 27(6):737–744

    Article  Google Scholar 

  42. Wirth W, Hellio Le Graverand MP, Wyman BT, Maschek S, Hudelmaier M, Hitzl W, Nevitt M, Eckstein F, Group OAII (2009) Regional analysis of femorotibial cartilage loss in a subsample from the Osteoarthritis Initiative progression subcohort. Osteoarthr Cartil 17(3):291–297

    Article  CAS  Google Scholar 

  43. Wirth W, Larroque S, Davies RY, Nevitt M, Gimona A, Baribaud F, Lee JH, Benichou O, Wyman BT, Hudelmaier M, Maschek S, Eckstein F, Group OAII (2011) Comparison of 1-year vs 2-year change in regional cartilage thickness in osteoarthritis results from 346 participants from the Osteoarthritis Initiative. Osteoarthr Cartil 19(1):74–83

    Article  CAS  Google Scholar 

  44. Wirth W, Nevitt M, Hellio Le Graverand MP, Benichou O, Dreher D, Davies RY, Lee J, Picha K, Gimona A, Maschek S, Hudelmaier M, Eckstein F, Investigators OAI (2010) Sensitivity to change of cartilage morphometry using coronal FLASH, sagittal DESS, and coronal MPR DESS protocols—comparative data from the Osteoarthritis Initiative (OAI). Osteoarthr Cartil 18(4):547–554

    Article  CAS  Google Scholar 

  45. Wluka AE, Stuckey S, Snaddon J, Cicuttini FM (2002) The determinants of change in tibial cartilage volume in osteoarthritic knees. Arthritis Rheum 46(8):2065–2072

    Article  Google Scholar 

Download references

Funding

No funding was used to conducting this study. Outside the submitted work Dr. Boettner reports personal fees from Smith & Nephew, personal fees from Ortho Development Corporation, personal fees from Depuy and Dr. Faschingbauer reports personal fees from Deutsche Forschungsgemeinschaft (Research Fellowship, FA 1271/1-1, www.dfg.de).

Author information

Authors and Affiliations

Authors

Contributions

FM: planning/conception of the study, collection of data, analysis and interpretation, statistical analysis, writing and revising article; (orthopedic surgeon). KM: collection of data, analysis and interpretation, statistical analysis; (resident). SP, WW: collection of data, critical revision of the article; (resident, orthopedic surgeon). RH, BF: critical revision of the article, final approval of the article, overall responsibility; (surgeon in chief University of Ulm; orthopedic surgeon, attending at HSS).

Corresponding author

Correspondence to Martin Faschingbauer.

Ethics declarations

Conflict of interest

We certify that we have not signed any agreement with commercial interest related to this study, which would in any way limit publication of any and all data generated for the study or to delay publication for any reason. Dr. Boettner reports personal fees from Smith & Nephew, personal fees from Ortho Development Corporation, personal fees from Depuy, outside the submitted work. Dr. Faschingbauer reports personal fees from Deutsche Forschungsgemeinschaft (Research Fellowship, FA 1271/1-1, http://www.dfg.de), during the conduct of the study.

Ethical statement

The authors’ institutional review board approved this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faschingbauer, M., Kasparek, M., Waldstein, W. et al. Cartilage survival of the knee strongly depends on malalignment: a survival analysis from the Osteoarthritis Initiative (OAI). Knee Surg Sports Traumatol Arthrosc 28, 1346–1355 (2020). https://doi.org/10.1007/s00167-019-05434-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-019-05434-1

Keywords

Navigation