Skip to main content

Advertisement

Log in

Medial compartment defects progress at a more rapid rate than lateral cartilage defects in older adults with minimal to moderate knee osteoarthritis (OA): data from the OA initiative

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To determine: (1) rates and risk factors for progression of lateral and medial full-thickness cartilage defect size in older adults without severe knee osteoarthritis (OA), and (2) whether risk factors for defect progression differ for knees with Kellgren–Lawrence OA grade 3 (moderate) OA versus grades 0–2 (none to mild) OA.

Methods

Three-hundred and eighty adults enrolled in the Osteoarthritis Initiative were included (43% male, mean age 63.0 SD 9.2 years). Ethical approval was obtained at all study sites prior to enrollment. All participants had full-thickness tibial or weight-bearing femoral condylar cartilage defects on baseline knee MRIs. Baseline OA grade was KL grade 3 in 71.3% and grades 0–2 in 21.7% of participants. Repeat MRIs were obtained at a minimum 2-year follow-up. Independent risk of progression in defect size due to demographic factors, knee alignment, OA grade, knee injury and surgery history, and baseline knee symptoms was determined by multivariate Cox proportional hazards and linear regression modeling.

Results

The average increase in defect size over 2 years for lateral defects was 0.18 cm2 (SD 0.60) and for medial defects was 0.49 cm2 (SD 1.09). Independent predictors of medical defect size progression were bipolar defects (beta 0.47 SE 0.08; p < 0.001), knee varus (per degree, beta 0.08 SE 0.03; p = 0.02) and increased weight (per kg, beta = 0.01 SE 0.004; p = 0.01). Independent predictors for lateral defect progression were larger baseline defect size (per 1.0 cm2, beta 0.14 SE 0.03; p < 0.001) and tibial sided defects (beta 0.12 SE 0.04) and degrees valgus (per degree, beta 0.04 SE 0.01; p = 0.001).

Conclusions

Medial compartment full-thickness defects progress at a more rapid rate than lateral defects in older adults with minimal to moderate OA. Medial defect progression was greatest for bipolar defects in heavier adults with varus knees. Lateral defect progression was greatest for large tibial-sided defects in adults with valgus knees.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akgun I, Unlu MC, Erdal OA, Ogut T, Erturk M, Ovali E et al (2015) Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg 135:251–263

    Article  PubMed  Google Scholar 

  2. Bae DK, Yoon KH, Song SJ (2006) Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy 22:367–374

    Article  PubMed  Google Scholar 

  3. Bedson J, Croft PR (2008) The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord 9:116

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bekkers JE, Inklaar M, Saris DB (2009) Treatment selection in articular cartilage lesions of the knee: a systematic review. Am J Sports Med 37(Suppl 1):148S–155S

    Article  PubMed  Google Scholar 

  5. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15:1833–1840

    CAS  PubMed  Google Scholar 

  6. Biswal S, Hastie T, Andriacchi TP, Bergman GA, Dillingham MF, Lang P (2002) Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum 46:2884–2892

    Article  PubMed  Google Scholar 

  7. Carnes J, Stannus O, Cicuttini F, Ding C, Jones G (2012) Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years. Osteoarthr Cartil 20:1541–1547

    Article  CAS  PubMed  Google Scholar 

  8. Cicuttini F, Ding C, Wluka A, Davis S, Ebeling PR, Jones G (2005) Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum 52:2033–2039

    Article  PubMed  Google Scholar 

  9. Clavé A, Potel JF, Servien E, Neyret P, Dubrana F, Stindel E (2016) Third-generation autologous chondrocyte implantation versus mosaicplasty for knee cartilage injury: 2-year randomized trial. J Orthop Res 34:658–665

    Article  CAS  PubMed  Google Scholar 

  10. Conaghan PG, Felson DT (2004) Structural associations of osteoarthritis pain: lessons from magnetic resonance imaging. Novartis Found Symp 260:191–201 (discussion 201–195, 277–199)

    PubMed  Google Scholar 

  11. Davies-Tuck ML, Wluka AE, Wang Y, Teichtahl AJ, Jones G, Ding C et al (2008) The natural history of cartilage defects in people with knee osteoarthritis. Osteoarthr Cartil 16:337–342

    Article  CAS  PubMed  Google Scholar 

  12. Ding C, Cicuttini F, Jones G (2007) Tibial subchondral bone size and knee cartilage defects: relevance to knee osteoarthritis. Osteoarthr Cartil 15:479–486

    Article  CAS  PubMed  Google Scholar 

  13. Ding C, Cicuttini F, Scott F, Cooley H, Boon C, Jones G (2006) Natural history of knee cartilage defects and factors affecting change. Arch Intern Med 166:651–658

    Article  PubMed  Google Scholar 

  14. Dong T, Chen W, Zhang F, Yin B, Tian Y, Zhang Y (2016) Radiographic measures of settlement phenomenon in patients with medial compartment knee osteoarthritis. Clin Rheumatol 35:1573–1578

    Article  PubMed  Google Scholar 

  15. Eckstein F, Kunz M, Schutzer M, Hudelmaier M, Jackson RD, Yu J et al (2007) Two year longitudinal change and test-retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative. Osteoarthr Cartil 15:1326–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eckstein F, Maschek S, Wirth W, Hudelmaier M, Hitzl W, Wyman B et al (2009) One year change of knee cartilage morphology in the first release of participants from the osteoarthritis initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status. Ann Rheum Dis 68:674–679

    Article  CAS  PubMed  Google Scholar 

  17. Everhart JS, Siston RA, Flanigan DC (2014) Tibiofemoral subchondral surface ratio (SSR) is a predictor of osteoarthritis symptoms and radiographic progression: data from the Osteoarthritis Initiative (OAI). Osteoarthr Cartil 22:771–778

    Article  CAS  PubMed  Google Scholar 

  18. Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N (2015) Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage 6:82–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hafezi-Nejad N, Zikria B, Eng J, Carrino JA, Demehri S (2015) Predictive value of semi-quantitative MRI-based scoring systems for future knee replacement: data from the osteoarthritis initiative. Skelet Radiol 44:1655–1662

    Article  Google Scholar 

  20. Heir S, Nerhus TK, Røtterud JH, Løken S, Ekeland A, Engebretsen L et al (2010) Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med 38:231–237

    Article  PubMed  Google Scholar 

  21. Jackson DW, Lalor PA, Aberman HM, Simon TM (2001) Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Jt Surg Am 83-A:53–64

    Article  Google Scholar 

  22. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kon E, Mandelbaum B, Buda R, Filardo G, Delcogliano M, Timoncini A et al (2011) Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthroscopy 27:1490–1501

    Article  PubMed  Google Scholar 

  24. Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P et al (2006) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22:1180–1186

    Article  PubMed  Google Scholar 

  25. Lanyon P, O’Reilly S, Jones A, Doherty M (1998) Radiographic assessment of symptomatic knee osteoarthritis in the community: definitions and normal joint space. Ann Rheum Dis 57:595–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maldonado G, Greenland S (1993) Simulation study of confounder-selection strategies. Am J Epidemiol 138:923–936

    Article  CAS  PubMed  Google Scholar 

  27. Mall NA, Harris JD, Cole BJ (2015) Clinical evaluation and preoperative planning of articular cartilage lesions of the knee. J Am Acad Orthop Surg 23:633–640

    Article  PubMed  Google Scholar 

  28. Mickey RM, Greenland S (1989) The impact of confounder selection criteria on effect estimation. Am J Epidemiol 129:125–137

    Article  CAS  PubMed  Google Scholar 

  29. Moreland JR, Bassett LW, Hanker GJ (1987) Radiographic analysis of the axial alignment of the lower extremity. J Bone Jt Surg Am 69:745–749

    Article  CAS  Google Scholar 

  30. Niemeyer P, Kostler W, Salzmann GM, Lenz P, Kreuz PC, Sudkamp NP (2010) Autologous chondrocyte implantation for treatment of focal cartilage defects in patients age 40 years and older: a matched-pair analysis with 2-year follow-up. Am J Sports Med 38:2410–2416

    Article  PubMed  Google Scholar 

  31. Patel KV, Guralnik JM, Dansie EJ, Turk DC (2013) Prevalence and impact of pain among older adults in the United States: findings from the 2011 national health and aging trends study. Pain 154:2649–2657

    Article  PubMed  Google Scholar 

  32. Pelletier JP, Raynauld JP, Berthiaume MJ, Abram F, Choquette D, Haraoui B et al (2007) Risk factors associated with the loss of cartilage volume on weight-bearing areas in knee osteoarthritis patients assessed by quantitative magnetic resonance imaging: a longitudinal study. Arthritis Res Ther 9:R74

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil 16:1433–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roemer FW, Kwoh CK, Hannon MJ, Hunter DJ, Eckstein F, Wang Z et al (2015) Can structural joint damage measured with MR imaging be used to predict knee replacement in the following year? Radiology 274:810–820

    Article  PubMed  Google Scholar 

  35. Roos EM, Lohmander LS (2003) The knee injury and osteoarthritis outcome score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes 1:64

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee injury and osteoarthritis outcome score (KOOS)—development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96

    Article  CAS  PubMed  Google Scholar 

  37. Rosenberger RE, Gomoll AH, Bryant T, Minas T (2008) Repair of large chondral defects of the knee with autologous chondrocyte implantation in patients 45 years or older. Am J Sports Med 36:2336–2344

    Article  PubMed  Google Scholar 

  38. Wang Y, Ding C, Wluka AE, Davis S, Ebeling PR, Jones G et al (2006) Factors affecting progression of knee cartilage defects in normal subjects over 2 years. Rheumatology 45:79–84

    Article  CAS  PubMed  Google Scholar 

  39. Washburn RA, Smith KW, Jette AM, Janney CA (1993) The physical activity scale for the elderly (PASE): development and evaluation. J Clin Epidemiol 46:153–162

    Article  CAS  PubMed  Google Scholar 

  40. Wirth W, Hellio Le Graverand MP, Wyman BT, Maschek S, Hudelmaier M, Hitzl W et al (2009) Regional analysis of femorotibial cartilage loss in a subsample from the osteoarthritis initiative progression subcohort. Osteoarthr Cartil 17:291–297

    Article  CAS  PubMed  Google Scholar 

  41. Wluka AE, Wang Y, Davies-Tuck M, English DR, Giles GG, Cicuttini FM (2008) Bone marrow lesions predict progression of cartilage defects and loss of cartilage volume in healthy middle-aged adults without knee pain over 2 yrs. Rheumatology 47:1392–1396

    Article  CAS  PubMed  Google Scholar 

  42. Zhai G, Blizzard L, Srikanth V, Ding C, Cooley H, Cicuttini F et al (2006) Correlates of knee pain in older adults: Tasmanian older adult cohort study. Arthritis Rheum 55:264–271

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The OAI is a public–private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation; GlaxoSmithKline and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. This manuscript was prepared using an OAI public use data set and does not necessarily reflect the opinions or views of the OAI investigators, the NIH, or the private funding partners.

Funding

David C. Flanigan reports consulting fees from Zimmer, DePuy Mitek, and Smith and Nephew.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Flanigan.

Ethics declarations

Conflict of interest

David C. Flanigan reports consulting fees from Zimmer, DePuy Mitek, and Smith and Nephew. For the remaining authors none were declared.

Ethical approval

The study protocol, amendments, and informed consent documentation were reviewed and approved by the Institutional Review Boards at all participating sites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everhart, J.S., Abouljoud, M.M., Poland, S.G. et al. Medial compartment defects progress at a more rapid rate than lateral cartilage defects in older adults with minimal to moderate knee osteoarthritis (OA): data from the OA initiative. Knee Surg Sports Traumatol Arthrosc 27, 2401–2409 (2019). https://doi.org/10.1007/s00167-018-5202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5202-1

Keywords

Navigation