Skip to main content
Log in

Anatomical rectangular tunnels identified with the arthroscopic landmarks result in excellent outcomes in ACL reconstruction with a BTB graft

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To elucidate tunnel locations and clinical outcomes after anatomic rectangular tunnel (ART) anterior cruciate ligament reconstruction (ACLR) using a bone–patellar tendon–bone (BTB) graft.

Methods

Sixty-one patients with a primary unilateral ACL injury were included. Tunnels were created inside the ACL attachment areas after carefully removing the ACL remnant and clearly identifying the bony landmarks. Using 3-dimensional computed tomography (3-D CT) images, the proportion of the tunnel apertures to the anatomical attachment areas was evaluated at 3 weeks. The clinical outcomes were evaluated at 2 years postoperatively.

Results

Geographically, the 3-D CT evaluation showed the entire femoral tunnel aperture; at least 75% of the entire tibial tunnel aperture area was consistently located inside the anatomical attachment areas surrounded by the bony landmarks. In the International Knee Documentation Committee (IKDC) subjective assessment, all patients were classified as ‘normal’ or ‘nearly normal’. The Lachman test and pivot-shift test were negative in 98.4% and 95.1% of patients, respectively. The mean side-to-side difference of the anterior laxity at the maximum manual force with a KT- 1000 Knee Arthrometer was 0.2 ± 0.9 mm, with 95.1% of patients ranging from − 1 to + 2 mm.

Conclusion

By identifying arthroscopic landmarks, the entire femoral tunnel aperture and at least 75% of the entire tibial tunnel aperture area were consistently located inside the anatomical attachment areas. With properly created tunnels inside the anatomical attachment areas, the ART ACLR using a BTB graft could provide satisfactory outcomes both subjectively and objectively in more than 95% of patients.

Level of evidence

Case series, Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ART:

Anatomic rectangular tunnel

ACLR:

Anterior cruciate ligament reconstruction

BTB:

Bone-patellar tendon-bone

3-D:

Three-dimensional

CT:

Computed tomography

IKDC:

International Knee Documentation Committee

References

  1. Ahn JH, Kang HW, Choi KJ (2018) Outcomes after double-bundle anterior cruciate ligament reconstruction. Arthroscopy 34(1):220–230

    Article  PubMed  Google Scholar 

  2. Bedi A, Maak T, Musahl V, Citak M, O’Loughlin PF, Choi D, Pearle AD (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: is the tibial tunnel position most important? Am J Sports Med 39(2):366–373

    Article  PubMed  Google Scholar 

  3. Berg EE (1993) Parsons’ knob (tuberculum intercondylare tertium). A guide to tibial anterior cruciate ligament insertion. Clin Orthop Relat Res (292):229–331

  4. Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10(1):14–22

    CAS  PubMed  Google Scholar 

  5. Colombet P, Robinson J, Christel P, Franceschi JP, Djian P, Bellier G, Sbihi A (2006) Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy 22(9):984–992

    Article  PubMed  Google Scholar 

  6. Das A, Yadav C, Gamanagatti S, Pandey RM, Mittal R (2018) Arthroscopic and 3D CT scan evaluation of femoral footprint of the anterior cruciate ligament in chronic ACL deficient knees. J Knee Surg. https://doi.org/10.1055/s-0038-1660515

    Article  PubMed  Google Scholar 

  7. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23:1218–1225

    Article  PubMed  Google Scholar 

  8. Forsythe B, Kopf S, Wong AK, Martins CA, Anderst W, Tashman S, Fu FH (2010) The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am 92(6):1418–1426

    Article  PubMed  Google Scholar 

  9. Gadikota HR, Sim JA, Hosseini A, Gill TJ, Li G (2012) The relationship between femoral tunnels created by the transtibial, anteromedial portal, and outside-in techniques and the anterior cruciate ligament footprint. Am J Sports Med 40(4):882–888

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hatayama K, Terauchi M, Saito K, Higuchi H, Yanagisawa S, Takagishi K (2013) The importance of tibial tunnel placement in anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 29(6):1072–1078

    Article  PubMed  Google Scholar 

  11. Howell SM, Taylor MA (1993) Failure of reconstruction of the anterior cruciate ligament due to impingement by the intercondylar roof. J Bone Joint Surg Am 75:1044–1055

    Article  CAS  PubMed  Google Scholar 

  12. Hutchinson MR, Ash SA (2003) Resident’s ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch. Arthroscopy 19(9):931–935

    Article  PubMed  Google Scholar 

  13. Iriuchishima T, Ingham SJ, Tajima G, Horaguchi T, Saito A, Tokuhashi Y, Van Houten AH, Aerts MM, Fu FH (2010) Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18(9):1226–1231

    Article  PubMed  Google Scholar 

  14. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2016) Blumensaat’s line is not always straight: morphological variations of the lateral wall of the femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc 24(9):2752–2757

    Article  PubMed  Google Scholar 

  15. Iwahashi T, Shino K, Nakata K, Nakamura N, Yamada Y, Yoshikawa H, Sugamoto K (2008) Assessment of the “functional length” of the three bundles of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 16(2):167–174

    Article  PubMed  Google Scholar 

  16. Iwahashi T, Shino K, Nakata K, Otsubo H, Suzuki T, Amano H, Nakamura N (2010) Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography. Arthroscopy 26(9 Suppl):S13–S20

    Article  PubMed  Google Scholar 

  17. Kim DH, Lim WB, Cho SW, Lim CW, Jo S (2016) Reliability of 3-dimensional computed tomography for application of the bernard quadrant method in femoral tunnel position evaluation after anatomic anterior cruciate ligament reconstruction. Arthroscopy 32(8):1660–1666

    Article  PubMed  Google Scholar 

  18. Kim JG, Kang SH, Kim JH, Lim CO, Wang JH (2018) Comparison of clinical results, second-look arthroscopic findings, and MRI findings between the transportal and outside-in techniques for double-bundle anatomic anterior cruciate ligament reconstruction: a prospective, randomized controlled trial with a minimum 2-year follow-up. Am J Sports Med 46(3):544–556

    Article  PubMed  Google Scholar 

  19. Kodama Y, Furumatsu T, Miyazawa S, Fujii M, Tanaka T, Inoue H, Ozaki T (2017) Location of the tibial tunnel aperture affects extrusion of the lateral meniscus following reconstruction of the anterior cruciate ligament. J Orthop Res 35(8):1625–1633

    Article  CAS  PubMed  Google Scholar 

  20. Kusano M, Yonetani Y, Mae T, Nakata K, Yoshikawa H, Shino K (2017) Tibial insertions of the anterior cruciate ligament and the anterior horn of the lateral meniscus: a histological and computed tomographic study. Knee 24(4):782–791

    Article  PubMed  Google Scholar 

  21. Lee JK, Lee S, Seong SC, Lee MC (2015) Anatomy of the anterior cruciate ligament insertion sites: comparison of plain radiography and three-dimensional computed tomographic imaging to anatomic dissection. Knee Surg Sports Traumatol Arthrosc 23(8):2297–2305

    Article  PubMed  Google Scholar 

  22. Lorenz S, Elser F, Mitterer M, Obst T, Imhoff AB (2009) Radiologic evaluation of the insertion sites of the 2 functional bundles of the anterior cruciate ligament using 3-dimensional computed tomography. Am J Sports Med 37(12):2368–2376

    Article  PubMed  Google Scholar 

  23. Mae T, Shino K, Matsumoto N, Natsu-Ume T, Yoneda K, Yoshikawa H, Yoneda M (2010) Anatomic double-bundle anterior cruciate ligament reconstruction using hamstring tendons with minimally required initial tension. Arthroscopy 26(10):1289–1295

    Article  PubMed  Google Scholar 

  24. Mae T, Shino K, Iuchi R, Kinugasa K, Uchida R, Nakagawa S, Yoshikawa H, Nakata K (2017) Biomechanical characteristics of the anatomic rectangular tunnel anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft. J Orthop Sci 22(5):886–891

    Article  PubMed  Google Scholar 

  25. Matsuo T, Mae T, Shino K, Kita K, Tachibana Y, Sugamoto K, Yoshikawa H, Nakata K (2014) Tibiofemoral relationship following anatomic triple-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22(9):2128–2135

    Article  PubMed  Google Scholar 

  26. Oka S, Schuhmacher P, Brehmer A, Traut U, Kirsch J, Siebold R (2016) Histological analysis of the tibial anterior cruciate ligament insertion. Knee Surg Sports Traumatol Arthrosc 24(3):747–753

    Article  PubMed  Google Scholar 

  27. Ouanezar H, Blakeney WG, Fernandes LR, Borade A, Latrobe C, Temponi EF, Sonnery-Cottet B (2018) Clinical outcomes of single anteromedial bundle biologic augmentation technique for anterior cruciate ligament reconstruction with consideration of tibial remnant size. Arthroscopy 34(3):714–722

    Article  PubMed  Google Scholar 

  28. Parkar AP, Adriaensen ME, Fischer-Bredenbeck C, Inderhaug E, Strand T, Assmus J, Solheim E (2015) Measurements of tunnel placements after anterior cruciate ligament reconstruction–A comparison between CT, radiographs and MRI. Knee 22(6):574–579

    Article  PubMed  Google Scholar 

  29. Parkinson B, Robb C, Thomas M, Thompson P, Spalding T (2017) Factors that predict failure in anatomic single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 45(7):1529–1536

    Article  PubMed  Google Scholar 

  30. Purnell ML, Larson AI, Clancy W (2008) Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography. Am J Sports Med 36(11):2083–2090

    Article  PubMed  Google Scholar 

  31. Rosenberg TD, Paulos LE, Parker RD, Coward DB, Scott SM (1988) The forty-five-degree posteroanterior flexion weightbearing radiograph of the knee. J Bone Joint Surg Am 70:1479–1483

    Article  CAS  PubMed  Google Scholar 

  32. Sadoghi P, Kröpfl A, Jansson V, Müller PE, Pietschmann MF, Fischmeister MF (2011) Impact of tibial and femoral tunnel position on clinical results after anterior cruciate ligament reconstruction. Arthroscopy 27(3):355–364

    Article  PubMed  Google Scholar 

  33. Sasaki N, Ishibashi Y, Tsuda E, Yamamoto Y, Maeda S, Mizukami H, Toh S, Yagihashi S, Tonosaki Y (2012) The femoral insertion of the anterior cruciate ligament: discrepancy between macroscopic and histological observations. Arthroscopy 28(8):1135–1146

    Article  PubMed  Google Scholar 

  34. Shelbourne KD, Benner RW, Gray T (2017) Results of anterior cruciate ligament reconstruction with patellar tendon autografts: objective factors associated with the development of osteoarthritis at 20 to 33 years after surgery. Am J Sports Med 45(12):2730–2738

    Article  PubMed  Google Scholar 

  35. Shimodaira H, Tensho K, Akaoka Y, Takanashi S, Kato H, Saito N (2016) Remnant-preserving tibial tunnel positioning using anatomic landmarks in double-bundle anterior cruciate ligament reconstruction. Arthroscopy 32(9):1822–1830

    Article  PubMed  Google Scholar 

  36. Shino K, Horibe S, Hamada M, Nakamura N, Nakata K, Mae T, Toritsuka Y (2002) Allograft anterior cruciate ligament reconstruction. Tech Knee Surg 1:78–85

    Article  Google Scholar 

  37. Shino K, Mae T, Maeda A, Miyama T, Shinjo H, Kawakami H (2002) Graft fixation with predetermined tension using a new device, the double spike plate. Arthroscopy 18(8):908–911

    Article  PubMed  Google Scholar 

  38. Shino K, Nakata K, Nakamura N, Toritsuka Y, Nakagawa S, Horibe S (2005) Anatomically oriented anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft via rectangular socket and tunnel: a snug-fit and impingement-free grafting technique. Arthroscopy 21(11):1402

    Article  PubMed  Google Scholar 

  39. Shino K, Nakata K, Nakamura N, Toritsuka Y, Horibe S, Nakagawa S, Suzuki T (2008) Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy 24(10):1178–1183

    Article  PubMed  Google Scholar 

  40. Shino K, Suzuki T, Iwahashi T, Mae T, Nakamura N, Nakata K, Nakagawa S (2010) The resident’s ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18(9):1164–1168

    Article  PubMed  Google Scholar 

  41. Shino K, Mae T, Tachibana Y (2015) Anatomic ACL reconstruction: rectangular tunnel/bone-patellar tendon-bone or triple-bundle/semitendinosus tendon grafting. J Orthop Sci 20(3):457–468

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shino K, Iuchi R, Tachibana Y, Ohori T, Mae T (2017) Anatomical femoral tunnel creation: outside-in versus anteromedial portal. Ann Joint 2(34):1–5

    Google Scholar 

  43. Siebold R, Schuhmacher P, Fernandez F, Śmigielski R, Fink C, Brehmer A, Kirsch J (2015) Flat midsubstance of the anterior cruciate ligament with tibial “C"-shaped insertion site. Knee Surg Sports Traumatol Arthrosc 23(11):3136–3142

    Article  PubMed  Google Scholar 

  44. Suzuki T, Shino K, Otsubo H, Suzuki D, Mae T, Fujimiya M, Yamashita T, Fujie H (2014) Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone-patellar tendon-bone graft. Arthroscopy 30(10):1294–1302

    Article  PubMed  Google Scholar 

  45. Tanaka Y, Kita K, Takao R, Amano H, Uchida R, Shiozaki Y, Yonetani Y, Kinugasa K, Mae T, Horibe S (2018) Chronicity of anterior cruciate ligament deficiency, part 2: radiographic predictors of early graft failure. Orthop J Sports Med 16(2):2325967117751915. https://doi.org/10.1177/2325967117751915

    Article  Google Scholar 

  46. Tensho K, Shimodaira H, Aoki T, Narita N, Kato H, Kakegawa A, Fukushima N, Moriizumi T, Fujii M, Fujinaga Y, Saito N (2014) Bony landmarks of the anterior cruciate ligament tibial footprint: a detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations. Am J Sports Med 42(6):1433–1440

    Article  PubMed  Google Scholar 

  47. Tsukada H, Ishibashi Y, Tsuda E, Fukuda A, Toh S (2008) Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci 13(2):122–129

    Article  PubMed  Google Scholar 

  48. Yasen SK, Borton ZM, Eyre-Brook AI, Palmer HC, Cotterill ST, Risebury MJ, Wilson AJ (2017) Clinical outcomes of anatomic, all-inside, anterior cruciate ligament (ACL) reconstruction. Knee 24(1):55–62

    Article  PubMed  Google Scholar 

  49. Zantop T, Diermann N, Schumacher T, Schanz S, Fu FH, Petersen W (2008) Anatomical and nonanatomical double-bundle anterior cruciate ligament reconstruction: importance of femoral tunnel location on knee kinematics. Am J Sports Med 36(04):678–685

    Article  PubMed  Google Scholar 

Download references

Funding

No external funding was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Tachibana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest associated with the present study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tachibana, Y., Shino, K., Mae, T. et al. Anatomical rectangular tunnels identified with the arthroscopic landmarks result in excellent outcomes in ACL reconstruction with a BTB graft. Knee Surg Sports Traumatol Arthrosc 27, 2680–2690 (2019). https://doi.org/10.1007/s00167-018-5300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5300-0

Keywords

Navigation