Skip to main content
Log in

Alignment factors affecting the medial meniscus extrusion increases the risk of osteoarthritis development

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Varus alignment is known as one of the major causes of medial compartment osteoarthritis (OA). Medial meniscus extrusion also plays a critical role in the in the development of OA. However, studies on the exact relationship between alignment parameters and medial meniscus extrusion are limited. Therefore, this study aimed to investigate this relationship in patients with knee OA.

Methods

Based on a retrospective analysis of the outpatient magnetic resonance imaging (MRI) database, 190 knees were identified to be examined using weight-bearing, whole-leg radiographs and MRIs within 3 months from the first consultation. Subsequently, various parameters of lower leg alignment were measured, which affected the knee varus in radiographs. Finally, a statistical analysis was performed to assess the relationships between the OA grade, distance of medial meniscus extrusion (MME), and alignment parameters; hip–knee–ankle angle (HKAA), percentage of mechanical axis (% MA), medial proximal tibial angle (MPTA), and joint line convergence angle (JLCA). The subjects were divided according to the presence or absence of MME (Group A: MME distance below 3 mm, Group B: MME distance 3 mm and above) to assess the differences in each alignment parameter correlated with MME distance between the groups.

Results

MME distance significantly increased with OA grade progression. HKAA, % MA, MPTA, and JLCA significantly correlated with medial meniscus extrusion distance (r = − 0.21, − 0.23, − 0.16, 0.3, respectively). Multiple regression analysis of each significant alignment combined with age, sex, and body mass index revealed that HKAA, % MA, MPTA, and JLCA were significant independent factors of MME distance (P = 0.008, 0.0026, 0.011, 0.0001, respectively). These significant findings were reinforced in group B. In contrast, the correlation between alignment parameters and medial meniscus extrusion distance was not significant in group A.

Conclusion

Varus alignment factors are related to MME distance especially in extruded meniscus knees, as the OA grade progressed. Therefore, the coexistence of varus alignment and MME can be the risk factors for OA progression. As the low MPTA was an independent alignment factor for generating varus alignment, patients with osteoarthritis of the knee with both, low MPTA and MME could be the appropriate candidates for early intervention by high tibial osteotomy.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

OA:

Osteoarthritis

MME:

Medial meniscus extrusion

MRI:

Magnetic resonance imaging

HKAA:

Hip–knee–ankle angle

% MA:

Percentage of mechanical axis

LDFA:

Lateral distal femoral angle

MPTA:

Medial proximal tibial angle

JLCA:

Joint line convergence angle

LDTA:

Lateral distal tibial angle

BMI:

Body mass index

HTO:

High tibial osteotomy;

References

  1. Achtnich A, Petersen W, Willinger L, Sauter A, Rasper M, Wörtler K, Imhoff AB, Diermeier T (2018) Medial meniscus extrusion increases with age and BMI and is depending on different loading conditions. Knee Surg Sports Traumatol Arthrosc 26(8):2282–2288

    Article  PubMed  Google Scholar 

  2. Agneskirchner JD, Hurschler C, Wrann CD, Lobenhoffer P (2007) The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study. Arthroscopy 23(8):852–861

    Article  PubMed  Google Scholar 

  3. Antony B, Driban JB, Price LL, Lo GH, Ward RJ, Nevitt M, Lynch J, Eaton CB, Ding C, McAlindon TE (2017) The relationship between meniscal pathology and osteoarthritis depends on the type of meniscal damage visible on magnetic resonance images: data from the Osteoarthritis Initiative. Osteoarthr Cartil 25(1):76–84

    Article  CAS  PubMed  Google Scholar 

  4. Bloecker K, Guermazi A, Wirth W, Benichou O, Kwoh CK, Hunter DJ, Englund M, Resch H, Eckstein F (2013) Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing—data from the osteoarthritis Initiative. Osteoarthr Cartil 21(3):419–427

    Article  CAS  PubMed  Google Scholar 

  5. Bonasia DE, Governale G, Spolaore S, Rossi R, Amendola A (2014) High tibial osteotomy. Curr Rev Musculoskelet Med 7(4):292–301

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chiba D, Maeda S, Sasaki E, Ota S, Nakaji S, Tsuda E, Ishibashi Y (2017) Meniscal extrusion seen on ultrasonography affects the development of radiographic knee osteoarthritis: a 3-year prospective cohort study. Clin Rheumatol 36(11):2557–2564

    Article  PubMed  Google Scholar 

  7. Chiba K, Yonekura A, Miyamoto T, Osaki M, Chiba G (2017) Tibial condylar valgus osteotomy (TCVO) for osteoarthritis of the knee: 5-year clinical and radiological results. Arch Orthop Trauma Surg 137(3):303–310

    Article  PubMed  PubMed Central  Google Scholar 

  8. Choi GW, Yang JH, Park JH, Yun HH, Lee YI, Chae JE, Yoon JR (2017) Changes in coronal alignment of the ankle joint after high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 25(3):838–845

    Article  PubMed  Google Scholar 

  9. Chung KS, Ha JK, Ra HJ, Lee HS, Lee DW, Park JH, Kim DH, Kim JG (2018) Pullout fixation for medial meniscus posterior root tears: clinical results were not age-dependent, but osteoarthritis progressed. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-5024-1

    Article  PubMed  Google Scholar 

  10. Chung KS, Ha JK, Ra HJ, Kim JG (2016) A meta-analysis of clinical and radiographic outcomes of posterior horn medial meniscus root repairs. Knee Surg Sports Traumatol Arthrosc 24(5):1455–1468

    Article  PubMed  Google Scholar 

  11. Chung KS, Ha JK, Ra HJ, Nam GW, Kim JG (2017) Pullout fixation of posterior medial meniscus root tears: correlation between meniscus extrusion and midterm clinical results. Am J Sports Med 45(1):42–49

    Article  PubMed  Google Scholar 

  12. Cooke TD, Sled EA, Scudamore RA (2007) Frontal plane knee alignment: a call for standardized measurement. J Rheumatol 34(9):1796–1801

    PubMed  Google Scholar 

  13. Cooke TD, Scudamore RA, Bryant JT, Sorbie C, Siu D, Fisher B (1991) A quantitative approach to radiography of the lower limb. Principles and applications. J Bone Joint Surg Br 73(5):715–720

    Article  CAS  PubMed  Google Scholar 

  14. Costa CR, Morrison WB, Carrino JA (2004) Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear? AJR Am J Roentgenol 183(1):17–23

    Article  PubMed  Google Scholar 

  15. Crema MD, Roemer FW, Felson DT, Englund M, Wang K, Jarraya M, Nevitt MC, Marra MD, Torner JC, Lewis CE, Guermazi A (2012) Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the multicenter osteoarthritis study. Radiology 264(2):494–503

    Article  PubMed  PubMed Central  Google Scholar 

  16. Erquicia J, Gelber PE, Cardona-Muñoz JI, Pelfort X, Tey M, Monllau JC (2012) There is no relation between mild malalignment and meniscal extrusion in trauma emergency patients. Injury 43(2):68–72

    Article  Google Scholar 

  17. Falah M, Nierenberg G, Soudry M, Hayden M, Volpin G (2010) Treatment of articular cartilage lesions of the knee. Int Orthop 34(5):621–630

    Article  PubMed  PubMed Central  Google Scholar 

  18. Furumatsu T, Kamatsuki Y, Fujii M, Kodama Y, Okazaki Y, Masuda S, Ozaki T (2017) Medial meniscus extrusion correlates with disease duration of the sudden symptomatic medial meniscus posterior root tear. Orthop Traumatol Surg Res 103(8):1179–1182

    Article  CAS  PubMed  Google Scholar 

  19. Furumatsu T, Kodama Y, Kamatsuki Y, Hino T, Okazaki Y, Ozaki T (2017) Meniscal extrusion progresses shortly after the medial meniscus posterior root tear. Knee Surg Relat Res 29(4):295–301

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guess TM, Razu S, Jahandar H, Stylianou A (2015) Predicted loading on the menisci during gait: the effect of horn laxity. J Biomech 48(8):1490–1498

    Article  PubMed  PubMed Central  Google Scholar 

  21. Iseki Y, Takahashi T, Takeda H, Tsuboi I, Imai H, Mashima N, Watanabe S, Yamamoto H (2009) Defining the load bearing axis of the lower extremity obtained from anterior-posterior digital radiographs of the whole limb in stance. Osteoarthr Cartil 17(5):586–591

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan DJ, Alaia EF, Dold AP, Meislin RJ, Strauss EJ, Jazrawi LM, Alaia MJ (2018) Increased extrusion and ICRS grades at 2-year follow-up following transtibial medial meniscal root repair evaluated by MRI. Knee Surg Sports Traumatol Arthrosc 26(9):2826–2834

    Article  PubMed  Google Scholar 

  23. Kawaguchi K, Enokida M, Otsuki R, Teshima R (2012) Ultrasonographic evaluation of medial radial displacement of the medial meniscus in knee osteoarthritis. Arthritis Rheum 64(1):173–180

    Article  PubMed  Google Scholar 

  24. Kawahara T, Sasho T, Katsuragi J, Ohnishi T, Haneishi H (2017) Relationship between knee osteoarthritis and meniscal shape in observation of Japanese patients by using magnetic resonance imaging. J Orthop Surg Res 12(1):97

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuroyanagi Y, Nagura T, Kiriyama Y, Matsumoto H, Otani T, Toyama Y, Suda Y (2012) A quantitative assessment of varus thrust in patients with medial knee osteoarthritis. Knee 19(2):130–134

    Article  PubMed  Google Scholar 

  27. Kwak YH, Lee S, Lee MC, Han HS (2018) Large meniscus extrusion ratio is a poor prognostic factor of conservative treatment for medial meniscus posterior root tear. Knee Surg Sports Traumatol Arthrosc 26(3):781–786

    Article  PubMed  Google Scholar 

  28. Lee DH, Lee BS, Kim JM, Yang KS, Cha EJ, Park JH, Bin SI (2011) Predictors of degenerative medial meniscus extrusion: radial component and knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 19(2):222–229

    Article  PubMed  Google Scholar 

  29. Lee DH, Park SC, Park HJ, Han SB (2016) Effect of soft tissue laxity of the knee joint on limb alignment correction in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 24(12):3704–3712

    Article  PubMed  Google Scholar 

  30. Lee DW, Ha JK, Kim JG (2014) Medial meniscus posterior root tear: a comprehensive review. Knee Surg Relat Res 26(3):125–134

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee YG, Shim JC, Choi YS, Kim JG, Lee GJ, Kim HK (2008) Magnetic resonance imaging findings of surgically proven medial meniscus root tear: tear configuration and associated knee abnormalities. J Comput Assist Tomogr 32(3):452–457

    Article  PubMed  Google Scholar 

  32. Nakayama H, Schröter S, Yamamoto C, Iseki T, Kanto R, Kurosaka K, Kambara S, Yoshiya S, Higa M (2018) Large correction in opening wedge high tibial osteotomy with resultant joint-line obliquity induces excessive shear stress on the articular cartilage. Knee Surg Sports Traumatol Arthrosc 26(6):1873–1878

    Article  PubMed  Google Scholar 

  33. Shelburne KB, Kim HJ, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 29(2):223–231

    Article  PubMed  Google Scholar 

  34. Swamy N, Wadhwa V, Bajaj G, Chhabra A, Pandey T (2018) Medial meniscal extrusion: detection, evaluation and clinical implications. Eur J Radiol 102:115–124

    Article  PubMed  Google Scholar 

  35. Teichtahl AJ, Cicuttini FM, Abram F, Wang Y, Pelletier JP, Dodin P, Martel-Pelletier J (2017) Meniscal extrusion and bone marrow lesions are associated with incident and progressive knee osteoarthritis. Osteoarthr Cartil 25(7):1076–1083

    Article  CAS  PubMed  Google Scholar 

  36. Verdonk R, Madry H, Shabshin N, Dirisamer F, Peretti GM, Pujol N, Spalding T, Verdonk P, Seil R, Condello V, Di Matteo B, Zellner J, Angele P (2016) The role of meniscal tissue in joint protection in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 24(6):1763–1774

    Article  PubMed  Google Scholar 

  37. Voloshin AS, Wosk J (1983) Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng 5(2):157–161

    Article  CAS  PubMed  Google Scholar 

  38. Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat Res (109):184–192

  39. Yamagami R, Taketomi S, Inui H, Tahara K, Tanaka S (2017) The role of medial meniscus posterior root tear and proximal tibial morphology in the development of spontaneous osteonecrosis and osteoarthritis of the knee. Knee 24(2):390–395

    Article  PubMed  Google Scholar 

Download references

Funding

No funding has been received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Akasaki.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest which might have influenced the preparation of this manuscript.

Ethical approval

This study was approved by the institutional review board at Kyushu University (No. 29-428).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, N., Okazaki, K., Akiyama, T. et al. Alignment factors affecting the medial meniscus extrusion increases the risk of osteoarthritis development. Knee Surg Sports Traumatol Arthrosc 27, 2617–2623 (2019). https://doi.org/10.1007/s00167-018-5286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5286-7

Keywords

Navigation