Skip to main content

Advertisement

Log in

The effect of intraoperative fluoroscopy on the accuracy of femoral tunnel placement in single-bundle anatomic ACL reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of the current study was to investigate the potential effect of intraoperative fluoroscopy on the accuracy of femoral tunnel placement in anatomic ACL reconstruction, using an ideal anatomic point as reference and evaluating postoperative tunnel placement based on 3D CT.

Methods

An experienced ACL surgeon, using the anatomic approach for femoral tunnel placement, relying on intraarticular landmarks and remnants of the torn ACL—and novel to the fluoroscopic assist—was introduced to its use. A prospective series of patients was included where group 1 (without fluoroscopy) and group 2 (with fluoroscopy) both had postoperative CT scans so that femoral tunnel position could be evaluated and compared to an ideal tunnel centre based on anatomic studies by using the Bernard and Hertel grid.

Results

Group 2, where fluoroscopy was used, had a mean femoral tunnel that was closer to the ideal anatomic centre than group 1. In the Bernard and Hertel grid, the distance in the high-low axis (y-axis) was found significantly closer (P = 0.001), whilst the deep-shallow axis (x-axis) and a total absolute distance were not significantly closer to the ideal described anatomic centre.

Conclusions

Intraoperative fluoroscopy was found effective as an aid for placing the femoral tunnel in a more accurate position, as compared to a desired anatomic centre. Although the concept of the “one-size-fits-all” approach for tunnel placement is debatable, the avoidance of grossly misplaced tunnels is the benefit of using fluoroscopy during ACL reconstruction. The authors hold that fluoroscopy is readily available, safe and easy to use and therefore a good aid in the anatomic approach for graft tunnel placement, for example, in a learning situation, in revision cases and when performing low volumes of such surgery.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aglietti P, Buzzi R, Giron F, Simeone AJ, Zaccherotti G (1997) Arthroscopic-assisted anterior cruciate ligament reconstruction with the central third patellar tendon. A 5–8-year follow-up. Knee Surg Sports Traumatol Arthrosc 5:138–144

    Article  CAS  PubMed  Google Scholar 

  2. Amis AA (2012) The functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc 20:613–620

    Article  PubMed  Google Scholar 

  3. Amis AA, Bull AMJ, Lie DTT (2005) Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Oper Tech Orthop 15:29–35

    Article  Google Scholar 

  4. Behrend H, Stutz G, Kessler MA, Rukavina A, Giesinger K, Kuster MS (2006) Tunnel placement in anterior cruciate ligament (ACL) reconstruction: quality control in a teaching hospital. Knee Surg Sports Traumatol Arthrosc 14:1159–1165

    Article  CAS  PubMed  Google Scholar 

  5. Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21

    CAS  PubMed  Google Scholar 

  6. Bird JH, Carmont MR, Dhillon M, Smith N, Brown C, Thompson P, Spalding T (2011) Validation of a new technique to determine midbundle femoral tunnel position in anterior cruciate ligament reconstruction using 3-dimensional computed tomography analysis. Arthroscopy 27:1259–1267

    Article  PubMed  Google Scholar 

  7. Brown CH, Spalding T, Robb C (2013) Medial portal technique for single-bundle anatomical anterior cruciate ligament (ACL) reconstruction. Int Orthop 37:253–269

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cheng I, Shen R, Moreau R (2014) An augmented reality framework for optimization of computer assisted navigation in endovascular surgery. In: Conference Proceedings of the IEEE Engineering in Medicine and Biology Society pp 5647–5650

  9. Chitnavis JP, Karthikesaligam A, Macdonald A, Brown C (2010) Radiation risk from fluoroscopically-assisted anterior cruciate ligament reconstruction. Ann R Coll Surg Engl 92:330–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chouteau J, Benareau I, Testa R, Fessy MH, Lerat JL, Moyen B (2007) Comparative study of knee anterior cruciate ligament reconstruction with or without fluoroscopic assistance: a prospective study of 73 cases. Arch Orthop Trauma Surg 128:945–950

    Article  PubMed  Google Scholar 

  11. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23:1218–1225

    Article  PubMed  Google Scholar 

  12. Haasper C, Kopf S, Lorenz S, Middleton KK, Tashman S, Fu FH (2015) Influence of tibial rotation on tibial tunnel position measurements using lateral fluoroscopy in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23:649–654

    Article  PubMed  Google Scholar 

  13. Halbrecht J, Levy IM (1993) Fluoroscopic assist in anterior cruciate ligament reconstruction. Arthroscopy 9:533–535

    Article  CAS  PubMed  Google Scholar 

  14. Hiraoka H, Kuribayashi S, Fukuda A, Fukui N, Nakamura K (2006) Endoscopic anterior cruciate ligament reconstruction using a computer-assisted fluoroscopic navigation system. J Orthop Sci 11:159–166

    Article  PubMed  Google Scholar 

  15. Hughes AW, Dwyer AJ, Govindaswamy R, Lankester B (2012) The use of intra-operative fluoroscopy for tibial tunnel placement in anterior cruciate ligament reconstruction. Bone Joint Res 1:234–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Inderhaug E, Larsen A, Strand T, Waaler PA, Solheim E (2014) The effect of feedback from post-operative 3D CT on placement of femoral tunnels in single-bundle anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3355-0

    Google Scholar 

  17. Inderhaug E, Strand T, Fischer-Bredenbeck C, Solheim E (2015) Effect of a too posterior placement of the tibial tunnel on the outcome 10–12 years after anterior cruciate ligament reconstruction using the 70-degree tibial guide. Knee Surg Sports Traumatol Arthrosc 22:1182–1189

    Article  Google Scholar 

  18. Kasten P, Szczodry M, Irrgang J, Kropf E, Costello J, Fu FH (2010) What is the role of intra-operative fluoroscopic measurements to determine tibial tunnel placement in anatomical anterior cruciate ligament reconstruction? Knee Surg Sports Traumatol Arthrosc 18:1169–1175

    Article  PubMed  Google Scholar 

  19. Kawakami Y, Hiranaka T, Matsumoto T, Hida Y, Fukui T, Uemoto H, Doita M, Tsuji M, Kurosaka M, Kuroda R (2011) The accuracy of bone tunnel position using fluoroscopic-based navigation system in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 20:1503–1510

    Article  PubMed  Google Scholar 

  20. Khalfayan EE, Sharkey PF, Alexander AH, Bruckner JD, Bynum EB (1996) The relationship between tunnel placement and clinical results after anterior cruciate ligament reconstruction. Am J Sports Med 24:335–341

    Article  CAS  PubMed  Google Scholar 

  21. Klos TV, Banks SA, Habets RJ, Cook FF (2000) Sagittal plane imaging parameters for computer-assisted fluoroscopic anterior cruciate ligament reconstruction. Comput Aided Surg 5:28–34

    Article  CAS  PubMed  Google Scholar 

  22. Larson BJ, DeLange NP (2008) Fluoroscopically-assisted hamstring ACL reconstruction. Orthopedics 31:657–662

    Article  PubMed  Google Scholar 

  23. Larson BJ, Egbert J, Goble EM (1995) Radiation exposure during fluoroarthroscopically assisted anterior cruciate reconstruction. Am J Sports Med 23:462–464

    Article  CAS  PubMed  Google Scholar 

  24. Moloney G, Araujo P, Rabuck S, Carey R, Rincon G, Zhang X, Harner C (2013) Use of a fluoroscopic overlay to assist arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med 41:1794–1800

    Article  PubMed  Google Scholar 

  25. Morgan J, Dahm D, Levy B, Stuart M, The MARS Study Group (2012) Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg 25:361–368

    Article  PubMed  PubMed Central  Google Scholar 

  26. Newe A, Becker L, Schenk A (2014) Application and evaluation of interactive 3D PDF for presenting and sharing planning results for liver surgery in clinical routine. PLoS ONE. doi:10.1371/journal.pone.0115697

    PubMed  PubMed Central  Google Scholar 

  27. Owens BD (2013) Location, location, location. Am J Sports Med 41:2481–2483

    Article  PubMed  Google Scholar 

  28. Pinczewski LA, Salmon LJ, Jackson WFM, von Bormann RBP, Haslam PG, Tashiro S (2008) Radiological landmarks for placement of the tunnels in single-bundle reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 90:172–179

    Article  CAS  PubMed  Google Scholar 

  29. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind MC (2013) Increased risk of revision after anteromedial compared with transtibial drilling of the femoral tunnel during primary anterior cruciate ligament reconstruction: results from the Danish Knee Ligament Reconstruction Register. Arthroscopy 29:98–105

    Article  PubMed  Google Scholar 

  30. Sullivan JP, Matava MJ, Flanigan DC, Gao Y, Britton CL, Amendola A, MOON Group, Wolf BR, Spindler KS, Dunn WR, Carey JL, Cox CL, Andrish JT, Parker RD, Jones MH, Marx RG, McCarty EC, Vidal AF, Wolcott M, Wright RW, Brophy RH, Smith MV, Kaeding CC (2012) Reliability of tunnel measurements and the quadrant method using fluoroscopic radiographs after anterior cruciate ligament reconstruction. Am J Sports Med 40:2236–2241

    Article  PubMed  Google Scholar 

  31. Sven S, Maurice B, Hoeher J, Marc B (2015) Variability of tunnel positioning in fluoroscopic-assisted ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 23:2269–2277

    Article  PubMed  Google Scholar 

  32. Taketomi S, Inui H, Nakamura K, Hirota J, Sanada T, Masuda H, Takeda H, Tanaka S, Nakagawa T (2013) Clinical outcome of anatomic double-bundle ACL reconstruction and 3D CT model-based validation of femoral socket aperture position. Knee Surg Sports Traumatol Arthrosc 22:2194–2201

    Article  PubMed  Google Scholar 

  33. Tsukada S, Fujishiro H, Watanabe K, Nimura A, Mochizuki T, Mahakkanukrauh P, Yasuda K, Akita K (2014) Anatomic variations of the lateral intercondylar ridge: relationship to the anterior margin of the anterior cruciate ligament. Am J Sports Med 42:1110–1117

    Article  PubMed  Google Scholar 

  34. van Eck CF, Schreiber VM, Mejia HA, Samuelsson K, van Dijk CN, Karlsson J, Fu FH (2010) “Anatomic” anterior cruciate ligament reconstruction: a systematic review of surgical techniques and reporting of surgical data. Arthroscopy 26:S2–S12

    Article  PubMed  Google Scholar 

  35. van Eck CF, Kopf S, Irrgang JJ, Blankevoort L, Bhandari M, Fu FH, Poolman RW (2012) Single-bundle versus double-bundle reconstruction for anterior cruciate ligament rupture: a meta-analysis—does anatomy matter? Arthroscopy 28:405–424

    Article  PubMed  Google Scholar 

  36. Venne G, Rashquinha BJ, Pichora D, Ellis RD, Bicknell R (2014) Comparing conventional and computer-assisted surgery baseplate and screw placement in reverse shoulder arthroplasty. J Shoulder Elb Surg 24(7):1112–1119

    Article  Google Scholar 

  37. Wetzler MJ, Bartolozzi AR, Gillespie MJ, Rubenstein DL, Ciccotti MG, Miller LS (1996) Revision anterior cruciate ligament reconstruction. Oper Tech Orthop 6:181–189

    Article  Google Scholar 

  38. Youm Y-S, Cho S-D, Eo J, Lee K-J, Jung K-H, Cha J-R (2013) 3D CT analysis of femoral and tibial tunnel positions after modified transtibial single bundle ACL reconstruction with varus and internal rotation of the tibia. Knee 20:272–276

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eivind Inderhaug.

Ethics declarations

Conflict of interest

None.

Appendix

Appendix

See Figs. 1, 2, 3, 4 and 5; Table 1.

Fig. 4
figure 4

Bland–Altman plot comparing the agreement of the two observers for the high-low measurements

Fig. 5
figure 5

Bland–Altman plot comparing the agreement of the two observers for the deep-shallow measurements

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inderhaug, E., Larsen, A., Waaler, P.A. et al. The effect of intraoperative fluoroscopy on the accuracy of femoral tunnel placement in single-bundle anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25, 1211–1218 (2017). https://doi.org/10.1007/s00167-015-3858-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3858-3

Keywords

Navigation