Skip to main content

Advertisement

Log in

Comparative study of knee anterior cruciate ligament reconstruction with or without fluoroscopic assistance: a prospective study of 73 cases

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Correct placement of both tibial and femoral tunnels is one of the main factors for a favorable clinical outcome after anterior cruciate ligament (ACL) reconstruction. We used an original system of computer assisted surgery (CAS). The system, based on fluoroscopic guidance combined with special graphical software of image analyzing, showed to the surgeon, before drilling, the recommended placement of tibial and femoral tunnel centers. We compared the first anatomical and clinical results of this procedure to the usual one single incision technique.

Materials and methods

We conducted a prospective study on 73 patients; 37 patients were operated on with CAS and 36 without CAS, by the same senior surgeon. The mean age was 27 years for both groups. Every patient was reviewed at an average of 2.2 years (range 1–4.5) by an independent observer, using IKDC scoring system, KT-1000, and passive stress radiographs.

Results

Time between ACL rupture and reconstruction averaged 30 months for both groups. CAS needed 9.3 min extra surgery time. Clinical evaluation was graded from A to C as per the IKDC scoring system: 67.6% A, 29.7% B, 2.7% C with CAS; and 60% A, 37.1% B, 2.9% C without CAS. IKDC subjective knee evaluation score averaged 89.7 with CAS and 89.5 without CAS. Pre operative KT-1000 maxi manual differential laxity averaged 7. At revision time, all the patients after CAS had a differential laxity less than 2 and 97.7% without CAS. Stress X-rays differential laxity averaged 2.4 mm with CAS and 3 mm without CAS. The area of dispersion of the tunnels’ center was smaller on the femoral side using the CAS method. There was no statistically significant difference between both groups using IKDC score, KT-1000 and passive stress radiographs.

Conclusions

The CAS method provided a more accurate and reproducible tunnels placement without clinical significant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aglietti P, Buzzi R, Giron F, Simeone AJ, Zaccherotti G (1997) Arthroscopic-assisted anterior cruciate ligament reconstruction with the central third patellar tendon. A 5-8-year follow-up. Knee Surg Sports Traumatol Arthrosc 5:138–144

    Article  PubMed  CAS  Google Scholar 

  2. Aglietti P, Buzzi R, D’Andria S, Zaccherotti G (1992) Long-term study of anterior cruciate ligament reconstruction for chronic instability using the central one-third patellar tendon and a lateral extraarticular tenodesis. Am J Sports Med 20:38–45

    Article  PubMed  CAS  Google Scholar 

  3. Järvelä MD (2002) Anterior cruciate ligament reconstruction with a bone–patellar tendon–bone autograft: a long-term follow-up of 101 patients. Pittsbg Orthop J 13:57–59

    Google Scholar 

  4. Musahl V, Burkart A, Debski RE, Van Scyoc A, Fu FH, Woo SL (2002) Anterior cruciate ligament tunnel placement: comparison of insertion site anatomy with the guidelines of a computer-assisted surgical system. Arthroscopy 19:154–160

    Article  Google Scholar 

  5. Picard F, DiGioia AM, Moody J, Martinek V, Fu FH et al (2001) Accuracy in tunnel placement for ACL reconstruction. Comparison of traditional arthroscopic and computer-assisted navigation techniques. Comput Aided Surg 6:279–289

    Article  PubMed  CAS  Google Scholar 

  6. Burkart A, Debski RE, McMahon PJ, Rudy T, Fu FH et al (2001) Precision of ACL tunnel placement using traditional and robotic techniques. Comput Aided Surg 6:270–278

    PubMed  CAS  Google Scholar 

  7. Sommer C, Friederich NF, Muller W (2000) Improperly placed anterior cruciate ligament grafts: correlation between radiological parameters and clinical results. Knee Surg Sports Traumatol Arthrosc 8:207–213

    Article  PubMed  CAS  Google Scholar 

  8. Fineberg MS, Zarins B, Sherman OH (2000) Practical considerations in anterior cruciate ligament replacement surgery. Arthroscopy 16:715–724

    Article  PubMed  CAS  Google Scholar 

  9. Amis AA, Jakob RP (1998) Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc 6(suppl I):S2–12

    Article  PubMed  Google Scholar 

  10. Khalfayan EE, Sharkey PF, Alexander AH, Bruckner JD, Bynum EB (1996) The relationship between tunnel placement and clinical results after anterior cruciate ligament reconstruction. Am J Sports Med 24:335–341

    Article  PubMed  CAS  Google Scholar 

  11. Goble EM, Downey DJ, Wilcox TR (1995) Positioning of the tibial tunnel for anterior cruciate ligament reconstruction. Arthroscopy 11:688–695

    Article  PubMed  CAS  Google Scholar 

  12. Howell SM, Taylor MA (1993) Failure of reconstruction of the anterior cruciate ligament due to impingement by the intercondylar roof. J Bone Joint Surg Am 75:1044–1055

    PubMed  CAS  Google Scholar 

  13. Halbrecht J, Levy IM (1993) Fluoroscopic assist in anterior cruciate ligament reconstruction. Arthroscopy 9:533–535

    Article  PubMed  CAS  Google Scholar 

  14. Klos TV, Harman MK, Habets RJ, Devilee RJ, Banks SA (2000) Locating femoral graft placement from lateral radiographs in anterior cruciate ligament reconstruction: a comparison of 3 methods of measuring radiographic images. Arthroscopy 16:499–504

    Article  PubMed  CAS  Google Scholar 

  15. Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop 106:216–231

    Article  PubMed  Google Scholar 

  16. Langrana NA, Bronfeld J (1985) Computer-assisted analysis of ligament constraints in the knee. Clin Orthop 196:42–50

    PubMed  Google Scholar 

  17. Collette M, Mertens H, Peters M, Chaput A (1996) Radiological method for preoperative determination of isometric attachment points of an anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthrosc 4:75–83

    Article  PubMed  CAS  Google Scholar 

  18. Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21

    PubMed  CAS  Google Scholar 

  19. Julliard R, Lavallee S, Dessenne V (1998) Computer assisted reconstruction of the anterior cruciate ligament. Clin Orthop 354:57–64

    Article  Google Scholar 

  20. Klos TV, Banks SA, Habets RJ, Cook FF (2000) Sagittal plane imaging parameters for computer-assisted fluoroscopic anterior cruciate ligament reconstruction. Comput Aided Surg 5:28–34

    Article  PubMed  CAS  Google Scholar 

  21. Benareau I, Testa R, Moyen B (2002) Reconstruction du ligament croisé antérieur assistée par ordinateur: technique utilisant la fluoroscopie. In: Cahiers d’enseignement de la SOFCOT, vol 80. Elsevier SAS, Paris, pp 58–64

  22. Nizard R, Bizot P (2002) Chirurgie assistée par ordinateur du ligament croisé antérieur basée sur une imagerie préopératoire. In: Cahiers d’enseignement de la SOFCOT, vol 80. Elsevier SAS, Paris, pp 42–46

  23. Sati M, Staubli H, Bourquin Y, Kunz M, Nolte LP (2002) Real-time computerized in situ guidance system for ACL graft placement. Comput Aided Surg 7:25–40

    PubMed  CAS  Google Scholar 

  24. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67:720–726

    PubMed  CAS  Google Scholar 

  25. Lerat JL, Moyen B, Cladière F, Besse JL, Abidi H (2000) Knee instability after injury to the anterior cruciate ligament. J Bone Joint Surg Br 82:42–47

    Article  PubMed  CAS  Google Scholar 

  26. Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15:741–749

    Article  PubMed  CAS  Google Scholar 

  27. Howell SM (1998) Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 6(suppl I):S49–55

    Article  PubMed  Google Scholar 

  28. Howell SM, Barad SJ (1995) Knee extension and its relationship to the slope of the intercondylar roof. Implications for positioning the tibial tunnel in anterior cruciate ligament reconstructions. Am J Sports Med 23:288–294

    Article  PubMed  CAS  Google Scholar 

  29. Howell SM, Gittins ME, Gottlieb JE, Traina SM, Zoellner TM (2001) The relationship between the angle of the tibial tunnel in the coronal plane and loss of flexion and anterior laxity after anterior cruciate ligament reconstruction. Am J Sports Med 29:567–574

    PubMed  CAS  Google Scholar 

  30. Penner DA, Daniel DM, Wood P, Mishra D (1988) An in vitro study of anterior cruciate ligament graft placement and isometry. Am J Sports Med 16:238–243

    Article  PubMed  CAS  Google Scholar 

  31. Morgan CD, Kalman VR, Grawl DM (1995) Definitive landmarks for reproducible tibial tunnel placement in anterior cruciate ligament reconstruction. Arthroscopy 11:275–288

    Article  PubMed  CAS  Google Scholar 

  32. Klos TV, Habets RJ, Banks AZ, Banks SA, Devilee RJ, Cook FF (1998) Computer assistance in arthroscopic anterior cruciate ligament reconstruction. Clin Orthop 354:65–69

    Article  PubMed  Google Scholar 

  33. Amis AA, Zavras TD (1995) Isometricity and graft placement during anterior cruciate ligament reconstruction. Knee 2:5–17

    Article  Google Scholar 

  34. Staubli HU, Rauschning W (1994) Tibial attachment area of the anterior cruciate ligament in the extended knee position. Anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg Sports Traumatol Arthrosc 2:138–146

    Article  PubMed  CAS  Google Scholar 

  35. Ait Si Selmi T, Fithian D, Neyret P (2006) The evolution of osteoarthritis in 103 patients with ACL reconstruction at 17 years follow-up. Knee 13:353–358

    Article  PubMed  CAS  Google Scholar 

  36. Lerat JL, Chotel F, Besse JL, Moyen B et al (1998) Les résultats après 10 et 16 ans du traitement de la laxité chronique antérieure du genou par une reconstruction du ligament croisé antérieur avec un greffon de tendon rotulien associée à une plastie extra -articulaire externe. A propos de 138 cas. Rev Chir Orthop Reparatrice Appar Mot 84:712–727

    PubMed  CAS  Google Scholar 

  37. Shelbourne KD, Stube KC (1997) Anterior cruciate ligament (ACL)-deficient knee with degenerative arthrosis: treatment with an isolated autogenous patellar tendon ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 5:150–156

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Chouteau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chouteau, J., Benareau, I., Testa, R. et al. Comparative study of knee anterior cruciate ligament reconstruction with or without fluoroscopic assistance: a prospective study of 73 cases. Arch Orthop Trauma Surg 128, 945–950 (2008). https://doi.org/10.1007/s00402-007-0452-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-007-0452-2

Keywords

Navigation