Skip to main content
Log in

Immersed boundary-finite element model of fluid–structure interaction in the aortic root

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe a fluid–structure interaction model of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employs a version of Peskin’s immersed boundary (IB) method with a finite element description of the structural elasticity. As in earlier work, we use a fiber-based model of the valve leaflets, but this study extends earlier IB models of the aortic root by employing an incompressible hyperelastic model of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backward displacement method that determines the unloaded configuration of the root model. Our model yields realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations indicate that although the detailed leaflet and root kinematics show some grid sensitivity, our IB model of the aortic root nonetheless produces essentially grid-converged flow rates and pressures at practical grid spacings for the high Reynolds number flows of the aortic root. These results thereby clarify minimum grid resolutions required by such models when used as stand-alone models of the aortic valve as well as when used to provide models of the outflow valves in models of left-ventricular fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alastrué V., Garía A., Peña E., Rodríguez J., Martínez M., Doblaré M.: Numerical framework for patient-specific computational modelling of vascular tissue. Int. J. Numer. Methods Biomed. Eng. 26(1), 35–51 (2010)

    Article  MATH  Google Scholar 

  2. Alastrué V., Peña E., Martínez M.Á., Doblaré M.: Assessing the use of the opening angle method to enforce residual stresses in patient-specific arteries. Ann. Biomed. Eng. 35(10), 1821–1837 (2007)

    Article  Google Scholar 

  3. Azadani A.N., Chitsaz S., Matthews P.B., Jaussaud N., Leung J., Tsinman T., Ge L., Tseng E.E.: Comparison of mechanical properties of human ascending aorta and aortic sinuses. Ann. Thorac. Surg. 93(1), 87–94 (2012)

    Article  Google Scholar 

  4. Bellhouse B.J., Bellhouse F.H.: Mechanism of closure of the aortic valve. Nature 217, 86–87 (1968)

    Article  Google Scholar 

  5. Bols, J., Degroote, J., Trachet, B., Verhegghe, B., Segers, P., Vierendeels, J.: A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J. Comput. Appl. Math. 246, 10–17 (2013). doi:10.1016/j.cam.2012.10.034

  6. Bonow R.O., Carabello B.A., Chatterjee K., de Leon A.C., Faxon D.P., Freed M.D., Gaasch W.H., Lytle B.W., Nishimura R.A., O’Gara P.T., O’Rourke R.A., Otto C.M., Shah P.M., Shanewise J.S.: ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Circulation 114(5), E84–E231 (2006)

    Article  Google Scholar 

  7. Borazjani I.: Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput. Methods Appl. Mech. Eng. 257, 103–116 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borazjani I., Ge L., Sotiropoulos F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227(16), 7587–7620 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, M., Nonaka, A., Bell, J., Griffith, B., Donev, A.: Efficient variable-coefficient finite-volume Stokes solvers. Commun. Comput. Phys. 16(5), 1263–1297 (2014). doi:10.4208/cicp.070114.170614a

  10. Cardamone L., Valentín A., Eberth J.F., Humphrey J.D.: Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 8(6), 431–446 (2009)

    Article  Google Scholar 

  11. Carr J.A., Savage E.B.: Aortic valve repair for aortic insufficiency in adults: A contemporary review and comparison with replacement techniques. Eur. J. Cardio Thorac. Surg. 25(1), 6–15 (2005)

    Article  Google Scholar 

  12. Cheng A., Dagum P., Miller D.C.: Aortic root dynamics and surgery: from craft to science. Philos. Trans. R. Soc. B 362(1484), 1407–1419 (2007)

    Article  Google Scholar 

  13. Cheng R., Lai Y.G., Chandran K.B.: Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Eng. 32(11), 1471–1483 (2004)

    Article  Google Scholar 

  14. Conti C.A., Votta E., Della Corte A., Del Viscovo L., Bancone C., Cotrufo M., Redaelli A.: Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med. Eng. Phys. 32(2), 212–221 (2010)

    Article  Google Scholar 

  15. Creane A., Kelly D.J., Lally C.: Patient specific computational modeling in cardiovascular mechanics. In: Lopez, B.C., Peña, E. Patient-Specific Computational Modeling, pp. 61–79. Springer, Berlin (2012)

    Chapter  Google Scholar 

  16. Croft L.R., Mofrad M.R.K.: Computational modeling of aortic heart valves. In: De, S., Guilak, F., Mofrad, M.R.K. Computational Modeling in Biomechanics, pp. 221–252. Springer, Berlin (2010)

    Chapter  Google Scholar 

  17. Crosetto P., Reymond P., Deparis S., Kontaxakis D., Stergiopulos N., Quarteroni A.: Fluid–structure interaction simulation of aortic blood flow. Comput. Fluids 43(1), 46–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dagum P., Green G.R., Nistal F.J., Daughteres G.T., Timek T.A., Foppiano L.E., Bolger A.F., Ingels N.B., Miller D.C.: Deformational dynamics of the aortic root: modes and physiologic determinants. Circulation 100(2), II54–II62 (1999)

    Google Scholar 

  19. Hart J., Baaijens F.P.T., Peters G.W.M., Schreurs P.J.G.: A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36(5), 699–712 (2003)

    Article  Google Scholar 

  20. Putter S., Wolters B.J.B.M., Rutten M.C.M., Breeuwer M., Gerritsen F.A., van de Vosse F.N.: Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40(5), 1081–1090 (2007)

    Article  Google Scholar 

  21. Delfino A., Stergiopulos N., Moore J.E., Meister J.J.: Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30(8), 777–786 (1997)

    Article  Google Scholar 

  22. Driscol T.E., Eckstein R.W.: Systolic pressure gradients across the aortic valve and in the ascending aorta. Am. J. Physiol. 209(3), 557–563 (1965)

    Google Scholar 

  23. Dumont K., Stijnen J.M.A., Vierendeels J., Van De Vosse F.N., Verdonck P.R.: Validation of a fluid–structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput. Methods Biomech. Biomed. Eng. 7(3), 139–146 (2004)

    Article  Google Scholar 

  24. Esmaily Moghadam M., Bazilevs Y., Hsia T.Y., Vignon-Clementel I.E., Marsden A.L.: A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech. 48(3), 277–291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fai T.G., Griffith B.E., Mori Y., Peskin C.S.: Immersed boundary method for variable viscosity and variable density problems using fast linear solvers. I: numerical method and results. SIAM J. Sci. Comput. 35(5), B1132–B1161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Freeman R.V., Otto C.M.: Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111(24), 3316–3326 (2005)

    Article  Google Scholar 

  27. Fung Y.C.: What principle governs the stress distribution in living organs?. In: Fung, Y.C., Fukada, E., Wang, J. Biomechanics in China, Japan and USA, Science Press, Beijing (1983)

    Google Scholar 

  28. Fung Y.C.: What are the residual stresses doing in our blood vessels?. Ann. Biomed. Eng. 19(3), 237–249 (1991)

    Article  MathSciNet  Google Scholar 

  29. Gao H., Wang H.M., Berry C., Luo X.Y., Griffith B.E.: Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading. Int. J. Numer. Methods Biomed. Eng. 30(11), 1199–1222 (2014)

    Article  MathSciNet  Google Scholar 

  30. Gasser T.C., Ogden R.W., Holzapfel G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006)

    Article  Google Scholar 

  31. Gee M.W., Reeps C., Eckstein H.H., Wall W.A.: Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech. 42(11), 1732–1739 (2009)

    Article  Google Scholar 

  32. Govindjee S., Mihalic P.A.: Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int. J. Numer. Methods Eng. 43(5), 821–838 (1998)

    Article  MATH  Google Scholar 

  33. Griffith B.E.: An accurate and efficient method for the incompressible Navier–Stokes equations using the projection method as a preconditioner. J. Comput. Phys. 228(20), 7565–7595 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Griffith B.E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28(3), 317–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Griffith B.E., Hornung R.D., McQueen D.M., Peskin C.S.: An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223(1), 10–49 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Griffith B.E., Hornung R.D., McQueen D.M., Peskin C.S.: Parallel and adaptive simulation of cardiac fluid dynamics. In: Parashar, M., Li, X. Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications, Wiley, Hoboken (2009)

    Google Scholar 

  37. Griffith B.E., Lim S.: Simulating an elastic ring with bend and twist by an adaptive generalized immersed boundary method. Commun. Comput. Phys. 12(2), 433–461 (2012)

    MathSciNet  Google Scholar 

  38. Griffith B.E., Luo X., McQueen D.M., Peskin C.S.: Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 1(1), 137–177 (2009)

    Article  Google Scholar 

  39. Griffith, B.E., Luo, X.Y.: Hybrid finite difference/finite element version of the immersed boundary method (submitted)

  40. Guy R.D., Phillip B., Griffith B.E.: Geometric multigrid for an implicit-time immersed boundary method. Adv. Comput. Math. 41(3), 635–662 (2015)

    Article  MathSciNet  Google Scholar 

  41. Humphrey J.D.: Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer, Berlin (2002)

    Book  Google Scholar 

  42. Kim Y., Peskin C.S.: Penalty immersed boundary method for an elastic boundary with mass. Phys. Fluids 19, 053103 (2007)

    Article  Google Scholar 

  43. Kim, Y., Zhu, L., Wang, X., Peskin C.S.: On various techniques for computer simulation of boundaries with mass. In: Bathe, K.J. (ed.) Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, pp. 1746–1750. Elsevier, Amsterdam (2003)

  44. Kovács S.J., McQueen D.M., Peskin C.S.: Modelling cardiac fluid dynamics and diastolic function. Philos. Trans. R. Soc. Lond. A 359(1783), 1299–1314 (2001)

    Article  MATH  Google Scholar 

  45. Lansac E., Lim H.S., Shomura Y., Lim K.H., Rice N.T., Goetz W., Acar C., Duran C.M.G.: A four-dimensional study of the aortic root dynamics. Eur. J. Cardio Thorac. Surg. 22(4), 497–503 (2002)

    Article  Google Scholar 

  46. Lu J., Zhou X., Raghavan M.L.: Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40(3), 693–696 (2007)

    Article  Google Scholar 

  47. Luo X.Y., Griffith B.E., Ma X.S., Yin M., Wang T.J., Liang C.L., Watton P.N., Bernacca G.M.: Effect of bending rigidity in a dynamic model of a polyurethane prosthetic mitral valve. Biomech. Model. Mechanobiol. 11(6), 815–827 (2012)

    Article  Google Scholar 

  48. Ma X.S., Gao H., Griffith B.E., Berry C., Luo X.Y.: Image-based fluid–structure interaction model of the human mitral valve. Comput. Fluids 71, 417–425 (2013)

    Article  MathSciNet  Google Scholar 

  49. Marom G., Haj-Ali R., Raanani E., Schäfers H.J., Rosenfeld M.: A fluid–structure interaction model of the aortic valve with coaptation and compliant aortic root. Med. Biol. Eng. Comput. 50(2), 173–182 (2012)

    Article  Google Scholar 

  50. May-Newman K., Lam C., Yin F.C.P.: A hyperelastic constitutive law for aortic valve tissue. J. Biomech. Eng. 131(8), 081009 (2009)

    Article  Google Scholar 

  51. McQueen D.M., Peskin C.S.: Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J. Supercomput. 11(3), 213–236 (1997)

    Article  Google Scholar 

  52. McQueen D.M., Peskin C.S.: A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Comput. Graph. 34(1), 56–60 (2000)

    Article  Google Scholar 

  53. McQueen, D.M., Peskin, C.S.: Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity. In: Aref, H., Phillips J.W. (eds.) Mechanics for a New Millennium, Proceedings of the 20th International Conference on Theoretical and Applied Mechanics (ICTAM 2000). Kluwer Academic Publishers (2001)

  54. Mori Y., Peskin C.S.: Implicit second order immersed boundary methods with boundary mass. Comput. Methods Appl. Mech. Eng. 197(25–28), 2049–2067 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Murgo J.P., Westerhof N., Giolma J.P., Altobelli S.A.: Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62(1), 105–116 (1980)

    Article  Google Scholar 

  56. Nichols W.W., O’Rourke M.F.: McDonald’s Blood Flow in Arteries: Theoretical, Experimental, and Clinical Principles. CRC Press, Boca Raton (2011)

    Google Scholar 

  57. Peskin C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)

    Article  MATH  Google Scholar 

  58. Peskin C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Peskin C.S., McQueen D.M.: Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets. Am. J. Physiol. Heart Circ. Physiol. 266(1), H319–H328 (1994)

    Google Scholar 

  60. Peskin C.S., McQueen D.M.: Fluid dynamics of the heart and its valves. In: Othmer, H.G., Adler, F.R., Lewis, M.A., Dallon, J.C. Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology, pp. 309–337. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  61. Reul H., Vahlbruch A., Giersiepen M., Schmitz-Rode T.H., Hirtz V., Effert S.: The geometry of the aortic root in health, at valve disease and after valve replacement. J. Biomech. 23(2), 181–191 (1990)

    Article  Google Scholar 

  62. Roy, S., Heltai, L., Costanzo, F.: Benchmarking the immersed finite element method for fluid–structure interaction problems. ArXiv preprint arXiv:1306.0936

  63. Sacks M.S., Yoganathan A.P.: Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. B Biol. Sci. 362(1484), 1369–1391 (2007)

    Article  Google Scholar 

  64. Sauren, A.A.H.J.: The mechanical behaviour of the aortic valve. Ph.D. thesis, Technische Universiteit Eindhoven (1981)

  65. Sellier M.: An iterative method for the inverse elasto-static problem. J. Fluids Struct. 27(8), 1461–1470 (2011)

    Article  MathSciNet  Google Scholar 

  66. Shunk K.A., Garot J., Atalar E., Lima J.A.: Transesophageal magnetic resonance imaging of the aortic arch and descending thoracic aorta in patients with aortic atherosclerosis. J. Am. Coll. Cardiol. 37(8), 2031–2035 (2001)

    Article  Google Scholar 

  67. Singh I.M., Shishehbor M.H., Christofferson R.D., Tuzcu E.M., Kapadia S.R.: Percutaneous treatment of aortic valve stenosis. Clevel. Clin. J. Med. 75(11), 805–812 (2008)

    Article  Google Scholar 

  68. Sotiropoulos F., Borazjani I.: A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Comput. 47(3), 245–256 (2009)

    Article  Google Scholar 

  69. Stergiopulos N., Westerhof B.E., Westerhof N.: Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol. Heart Circ. Physiol. 276(1), H81–H88 (1999)

    Google Scholar 

  70. Swanson W.M., Clark R.E.: Dimensions and geometric relationships of the human aortic valve as a function of pressure. Circ. Res. 35(6), 871–882 (1974)

    Article  Google Scholar 

  71. Thubrikar M.: The Aortic Valve. CRC Press, Boca Raton (1989)

    Google Scholar 

  72. Vaishnav R.N., Vossoughi J.: Estimation of residual strain in aortic segment. In: Hall, C.W. Biomedical Engineering II: Recent Developments, Pergamon Press, Oxford (1983)

    Google Scholar 

  73. Vavourakis V., Papaharilaou Y., Ekaterinaris J.A.: Coupled fluid–structure interaction hemodynamics in a zero-pressure state corrected arterial geometry. J. Biomech. 44(13), 2453–2460 (2011)

    Article  Google Scholar 

  74. Viscardi F., Vergara C., Antiga L., Merelli S., Veneziani A., Puppini G., Faggian G., Mazzucco A., Luciani G.B.: Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve. Artif. Organs 34(12), 1114–1120 (2010)

    Article  Google Scholar 

  75. Weinberg E.J., Kaazempur Mofrad M.R.: A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41(16), 3482–3487 (2008)

    Article  Google Scholar 

  76. Westerhof N., Stergiopulos N., Noble M.I.M.: Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education. Springer, Berlin (2010)

    Book  Google Scholar 

  77. Wittek A., Karatolios K., Bihari P., Schmitz-Rixen T., Moosdorf R., Vogt S., Blase C.: In vivo determination of elastic properties of the human aorta based on 4D ultrasound data. J. Mech. Behav. Biomed. Mater. 27, 167–183 (2013)

    Article  Google Scholar 

  78. Yao J., Liu G.R., Narmoneva D.A., Hinton R.B., Zhang Z.Q.: Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Comput. Mech. 50(6), 789–804 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  79. Zhu L., Peskin C.S.: Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179(2), 452–468 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyce E. Griffith.

Additional information

Communicated by R. Mittal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flamini, V., DeAnda, A. & Griffith, B.E. Immersed boundary-finite element model of fluid–structure interaction in the aortic root. Theor. Comput. Fluid Dyn. 30, 139–164 (2016). https://doi.org/10.1007/s00162-015-0374-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0374-5

Keywords

Navigation