Skip to main content
Log in

Modeling of sodiation-induced deformation of Sn anode based on the stress-driven nonlocal integral elasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The anode material Sn used in sodium-ion batteries displays high theoretical capacity, complex phase transformation, and significant volume change during the charging/discharging process. In particular, the effects of small scale on the mechanical behavior of Sn anode at the nanoscale are very active research fields. However, the majority of these results are based on nonlocal gradient formulations. In this study, we proposed and established a model that combines the electrochemical reaction with stress-driven nonlocal integral elasticity for the nanoelectrode to analyze the evolution of diffusion-induced deformation during the sodiation process. Several critical features, such as the small-scale parameter, two-phase reaction, and concentration-dependent elastic modulus, were incorporated into the established model. The model demonstrated that a small scale could significantly affect the deformation behavior. The results obtained using the finite element method showed that the mechanical reliability of the Sn anode could be significantly enhanced when the anode was sodiated with larger nonlocal parameters and smaller slenderness. In addition, the axial action force exhibited a strong size effect and was influenced by the nondimensional thickness parameter of the anode. This work provides a framework for multi-scale research on high-capacity sodium-ion battery electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, S., Qiu, J., Lai, C., Ling, M., Zhao, H., Zhang, S.: Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12, 224–230 (2015)

    Article  Google Scholar 

  2. Liu, T., Zhang, Y., Chen, C., Lin, Z., Zhang, S., Lu, J.: Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat. Commun. 10(1), 1965 (2019)

    Article  ADS  Google Scholar 

  3. Lei, D., He, Y.B., Huang, H., Yuan, Y., Zhong, G., Zhao, Q., Kang, F.: Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 10(1), 4244 (2019)

    Article  ADS  Google Scholar 

  4. Li, Z., Ding, J., Mitlin, D.: Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc. Chem. Res. 48(6), 1657–1665 (2015)

    Article  Google Scholar 

  5. Guo, J., Jia, Z.: Stress evolution during the two-step charging of high-capacity electrode materials. J. Power Sources 486, 229371 (2021)

    Article  Google Scholar 

  6. Mukhopadhyay, A., Kali, R., Badjate, S., Tokranov, A., Sheldon, B.W.: Plastic deformation associated with phase transformations during lithiation/delithiation of Sn. Scr. Mater. 92, 47–50 (2014)

    Article  Google Scholar 

  7. Gonzalez, J.F., Antartis, D.A., Chasiotis, I., Dillon, S.J., Lambros, J.: In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation. J. Power Sources 381, 181–189 (2018)

    Article  ADS  Google Scholar 

  8. Qaiser, N., Kim, Y.J., Hong, C.S., Han, S.M.: Numerical modeling of fracture-resistant Sn micropillars as anode for lithium ion batteries. J. Phys. Chem. C 120(13), 6953–6962 (2016)

    Article  Google Scholar 

  9. Cao, X., Lu, Y., Jiang, H., Wang, F.: Phase-field modeling of chemo-mechanical relaxation effect on the fracture tolerance of a tin-based electrode. Mech. Mater. 148, 103502 (2020)

    Article  Google Scholar 

  10. Lu, Y., Che, Q., Song, X., Wang, F., Zhao, X.: Stress self-relaxation arising from diffusion-induced creep in bilayer lithium-ion battery electrode. Scr. Mater. 150, 164–167 (2018)

    Article  ADS  Google Scholar 

  11. Wang, J.W., Liu, X.H., Mao, S.X., Huang, J.Y.: Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 12(11), 5897–5902 (2012)

    Article  ADS  Google Scholar 

  12. Byeon, Y.W., Ahn, J.P., Lee, J.C.: Diffusion along dislocations mitigates self-limiting Na diffusion in crystalline Sn. Small 16(52), 2004868 (2020)

    Article  Google Scholar 

  13. Sarkar, S., Gonzalez-Malabet, H.J., Flannagin, M., L’Antigua, A., Shevchenko, P.D., Nelson, G.J., Mukherjee, P.P.: Multiscale electrochemomechanics interaction and degradation analytics of Sn electrodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 14(26), 29711–29721 (2022)

    Article  Google Scholar 

  14. Hao, F., Gao, X., Fang, D.: Diffusion-induced stresses of electrode nanomaterials in lithium-ion battery: the effects of surface stress. J. Appl. Phys. 112(10), 103507 (2012)

    Article  ADS  Google Scholar 

  15. Hao, F., Fang, D.: Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress. J. Electrochem. Soc. 160(4), A595-600 (2013)

    Article  Google Scholar 

  16. Tsagrakis, I., Aifantis, E.C.: Thermodynamic coupling between gradient elasticity and a Cahn–Hilliard type of diffusion: size-dependent spinodal gaps. Contin. Mech. Thermodyn. 29(6), 1181–1194 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wang, Y., Wu, H., Sun, L., Jiang, W., Lu, C., Ma, Z.: Coupled electrochemical-mechanical modeling with strain gradient plasticity for lithium-ion battery electrodes. Eur. J. Mech. A/Solids 87, 104230 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  18. Singh, A., Pal, S.: Strain gradient enhanced chemo-mechanical modeling of fracture in cathode materials for lithium-ion batteries. Int. J. Solids Struct. 228, 111098 (2021)

    Article  Google Scholar 

  19. Chen, Y., Sang, M., Jiang, W., Wang, Y., Zou, Y., Lu, C., Ma, Z.: Fracture predictions based on a coupled chemo-mechanical model with strain gradient plasticity theory for film electrodes of Li-ion batteries. Eng. Fract. Mech. 253, 107866 (2021)

    Article  Google Scholar 

  20. Tsagrakis, I., Aifantis, E.C.: Gradient elasticity effects on the two-phase lithiation of LIB anodes. Gen. Models Non-classical Approaches Complex Mater. 2, 221–235 (2018)

    Article  Google Scholar 

  21. Mortazavi, M., Deng, J., Shenoy, V.B., Medhekar, N.V.: Elastic softening of alloy negative electrodes for Na-ion batteries. J. Power Sources 225, 207–214 (2013)

    Article  ADS  Google Scholar 

  22. Qi, Y., Hector, L.G., James, C., Kim, K.J.: Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations. J. Electrochem. Soc. 161(11), F3010–F3018 (2014)

    Article  Google Scholar 

  23. Tang, Y., Lv, X., Yang, T.: Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration. Compos. Part B Eng. 156, 319–331 (2019)

    Article  Google Scholar 

  24. Deshpande, R.D., Cheng, Y., Verbrugge, M.W.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195, 5081–5088 (2010)

    Article  ADS  Google Scholar 

  25. Romano, G.P., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B Eng 114, 184–188 (2017)

    Article  Google Scholar 

  26. Barretta, R., Fabbrocino, F., Luciano, R., De Sciarra, F.M., Ruta, G.: Buckling loads of nano-beams in stress-driven nonlocal elasticity. Mech. Adv. Mater. Struct. 27(11), 869–875 (2020)

    Article  Google Scholar 

  27. Polyanin, P., Manzhirov, A.V.: Handbook of Integral Equations. Chapman and Hall/CRC, Boca Raton (2008)

    Book  Google Scholar 

  28. Aifantis, E.C.: On the gradient approach-relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 49(12), 1367–1377 (2011)

    Article  MathSciNet  Google Scholar 

  29. Oskouie, M.F., Ansari, R., Rouhi, H.: Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach. Acta Mech. Sin. 34, 871–882 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)

    Article  MathSciNet  Google Scholar 

  31. Nam, H.G., Park, J.Y., Yuk, J.M., Han, S.M.: Phase transformation mechanism and stress evolution in Sn anode. Energy Storage Mater. 45, 101–109 (2022)

    Article  Google Scholar 

  32. Barretta, R., Fabbrocino, F., Luciano, R., de Sciarra, F.M.: Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams. Physica E 97, 13–30 (2018)

    Article  ADS  Google Scholar 

  33. Barretta, R., Čanađija, M., de Sciarra, F.M.: Nonlocal integral thermoelasticity: a thermodynamic framework for functionally graded beams. Compos. Struct. 225, 111104 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China for financial support (Grant No. 12102396).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongchao Liu or Jing Wan.

Ethics declarations

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Lv, M., Liu, Z. et al. Modeling of sodiation-induced deformation of Sn anode based on the stress-driven nonlocal integral elasticity. Continuum Mech. Thermodyn. (2024). https://doi.org/10.1007/s00161-024-01290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-024-01290-8

Keywords

Navigation